中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 225-235 DOI: 10.7536/PC180611 Previous Articles   Next Articles

Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin

Mingfang Ma1,**(), Tianxiang Luan2, Pengyao Xing2, Zhaolou Li1, Xiaoxiao Chu2, Aiyou Hao2,**()   

  1. 1. Laboratory of New Antitumor Drug Molecular Design and Synthesis of Jining Medical University & College of Basic Medicine, Jining Medical University, Jining 272067, China
    2. Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received: Online: Published:
  • Contact: Mingfang Ma, Aiyou Hao
  • About author:
    ** E-mail: (Mingfang Ma);
    (Aiyou Hao)
  • Supported by:
    National Natural Science Foundation of China(21872087); PhD Start-up Scientific Research Foundation of Jining Medical University(2017JYQD03); Undergraduate Training Programs for Innovation of Jining Medical University(cx2018022)
Richhtml ( 48 ) PDF ( 1103 ) Cited
Export

EndNote

Ris

BibTeX

β-cyclodextrin is a cyclic oligosaccharide containing seven glucopyranose units, and can be produced by amylose under the action of cyclodextrin glucosyltransferase. β-cyclodextrin has cone shaped three-dimensional structure, with its cavity hydrophobic, while its outside hydrophilic. β-cyclodextrin has already been used widely in supramolecular chemistry due to its low price, good solubility and biocompatibility. β-cyclodextrin can be used to construct gel. But the usual way is grafting β-cyclodextrin onto polymer chain, and the obtained polymer chain containing β-cyclodextrin can act as gelator to construct polymer gel. Although polymer gels based on β-cyclodextrin have been studied extensively, there are few reports about low molecular weight organogel based on β-cyclodextrin. In 2010, our lab reported heat-set low molecular weight organogel based on β-cyclodextrin and diphenylamine for the first time. After that, a lot of research work about low molecular weight β-cyclodextrin organogel has been done in our group. Based on the research foundation of our lab, in this review, classification of different low molecular weight β-cyclodextrin organogel and different factors affecting the formation of low molecular weight β-cyclodextrin organogel are introduced at first. Then, the formation mechanism of low molecular weight β-cyclodextrin organogel is discussed deeply, and stimuli responsiveness of low molecular weight β-cyclodextrin organogel and application of low molecular weight β-cyclodextrin organogel on drug delivery are introduced systematically. Finally, development foreground of low molecular weight β-cyclodextrin organogel is prospected.

Fig. 1 Molecular structure of β-cyclodextrin
Fig. 2 Schematic illustration of sol-gel transition[27]
Fig. 3 Illustration of various hydrogels formed by different gelators.[28]
Fig. 4 Optical microscope images of the organogel(A, scale bar=1 μm); SEM images of xerogel of the organogel(B, scale bar=2 μm)[29]
Fig. 5 Images of the gel preparation process at room temperature[38]
Fig. 6 Photographs of the gel-sol-gel transition process:(a) gel A formed after cooling the solution;(b) homogeneous solution obtained after heating gel A;(c) gel B formed after heating the solution[41]
Table 1 States of different types of β-cyclodextrin in the DMF/water system
Fig. 7 The phase transition process of the β-cyclodextrin/LiCl/DMF system: a clear solution at 120~130 ℃(Ⅰ), a white gel(Ⅱ) after injecting cogelator, and a clear solution(Ⅲ) at room temperature[46]
Table 2 The effect of alcohols on the formation of the room-temperature organogel
Table 3 States of the gel after adding different salts at different concentrations
Fig. 8 Small-angle X-ray scattering(SAXS) patterns(a);and wide-angle X-ray scattering(WAXS) patterns(b)[38]
Fig. 9 Idealized drawings(top image) of the shape of the β-cyclodextrin torus, with cut along the Cn axis, and the cross profile of channel-type packing(bottom image)
Fig. 10 SEM images of xerogels prepared from various organogels:(a) DMAc gel;(b) DMF gel(Cβ-cyclodextrin=0.167 mol/L; CTP=0.084 mol/L)[50]
Fig. 11 Schematic illustration of the formation of 3D networks of nanofibers(red balls: HCOONa; dark cylinders: thymolphthalein)
Fig. 12 Temperature responsiveness images of the system of β-cyclodextrin/DMF/LiCl[53]
Fig. 13 Photographs of external chemical stimuli influence on the gel for 5 h, OH-(Ⅰ), HCl(Ⅱ), CH3COOH(Ⅲ), Cu2+(Ⅳ)[54]
Fig. 14 Photographs of phase transition from(a) the colloidal solution of β-cyclodextrin/glycerol to(b) β-cyclodextrin/glycerol gel, to(c) β-cyclodextrin/glycerol gel loaded with methotrexate, and to(d) β-cyclodextrin/glycerol gel loaded with 5-fluorouracil[55]
Fig. 15 Comparison of the inhibition rate of HepG2 cells induced by 5-Fu and 5-Fu-Gel. HepG2 cells were treated with increased concentrations of 5-Fu-Gel or 5-Fu(25 nM, 50 nM, and 100 nM) for 24 h
Fig. 16 Illustration of formation of low molecular weight β-cyclodextrin organogel loading with two kinds of drugs
Fig. 17 Fluorescence microscopy of cellular uptake of DOX released from gel observed after incubation for 0.5 h(A) DOX channel,(B) DAPI channel and(C) overlays of two images[56]
Fig. 18 The cytotoxicities of gel containing DOX, 5-FU or DOX and 5-FU against HeLa cells with different incubation time[56]
[1]
Shen Z C, Wang T Y, Liu M H . Angew. Chem. Int. Ed., 2014,53:1.
[2]
Hisamatsu Y, Banerjee S, Avinash M B, Govindaraju T, Schmuck T . Angew. Chem. Int. Ed., 2013,52:12550. https://www.ncbi.nlm.nih.gov/pubmed/24123861

doi: 10.1002/anie.201306986 pmid: 24123861
[3]
Tam A Y, Wong K M, Yam V W . Chem. Eur. J., 2009,15:4775. https://www.ncbi.nlm.nih.gov/pubmed/19322773

doi: 10.1002/chem.200900046 pmid: 19322773
[4]
Ma M F, Gu J G, Yang M M, Li Z L, Lu Z Q, Zhang Y M, Xing P Y, Li S Y, Chu X X, Wang Y J, Li Q, Lin M Y, Hao A Y . RSC Adv., 2015,5:70178.
[5]
Xing P Y, Chu X X, Li S Y, Ma M F, Hao A Y . ChemPhysChem, 2014,15:2377. https://www.ncbi.nlm.nih.gov/pubmed/24789749

doi: 10.1002/cphc.201402018 pmid: 24789749
[6]
Xing P Y, Chu X X, Ma M F, Li S Y, Hao A Y . Chem. Asian J., 2014,9:3440. https://www.ncbi.nlm.nih.gov/pubmed/25224776

doi: 10.1002/asia.201402645 pmid: 25224776
[7]
Sui J F, Wang L H, Zhao W R, Hao J C . Chem. Commun., 2016,52:6993. https://www.ncbi.nlm.nih.gov/pubmed/27156999

doi: 10.1039/c6cc01621a pmid: 27156999
[8]
Song S S, Feng L, Song A X, Hao J C . J. Phys. Chem. B, 2012,116:12850. https://www.ncbi.nlm.nih.gov/pubmed/23025583

doi: 10.1021/jp3066025 pmid: 23025583
[9]
Nanda J, Biswas A, Adhikari B, Banerjee A . Angew. Chem. Int. Ed., 2013,52:5041. https://www.ncbi.nlm.nih.gov/pubmed/23568284

doi: 10.1002/anie.201301128 pmid: 23568284
[10]
童林荟(Tong L H) . 环糊精化学——基础与应用 (Cyclodextrin Chemistry——Foundation and Application). 北京: 科学出版社 (Beijing: Science Press), 2001. 10.
[11]
Sun T, Li Y M, Zhang H C, Li J Y, Xin F F, Kong L, Hao A Y . Colloids Surf. A, 2011,375:87.
[12]
Sun T, Guo Q, Zhang C, Hao J C, Xing P Y, Li S Y, Hao A Y, Liu G C . Langmuir, 2012,28:8625. https://www.ncbi.nlm.nih.gov/pubmed/22607559

doi: 10.1021/la301497t pmid: 22607559
[13]
Sun T, Zhang H C, Kong L, Qiao H W, Li Y M, Xin F F, Hao A Y . Carbohydra. Res., 2011,346:285. https://www.ncbi.nlm.nih.gov/pubmed/21146158

doi: 10.1016/j.carres.2010.11.003 pmid: 21146158
[14]
Ma M F, Su J, Sheng X, Su F, Li S Y, Xing P Y, Hao A Y . J. Mol. Liq., 2014,198:1.
[15]
Zhou C C, Cheng X H, Zhao Q, Yan Y, Wang J D, Huang J B . Scientific Reports, 2014,4:7355. https://www.ncbi.nlm.nih.gov/pubmed/25483453

doi: 10.1038/srep07355 pmid: 25483453
[16]
Zhou C C, Huang J B, Yan Y . Soft Matter, 2016,12:1579. https://www.ncbi.nlm.nih.gov/pubmed/26660592

doi: 10.1039/c5sm02698a pmid: 26660592
[17]
Chen L, Chen H, Yao X Y, Ma X, Tian H . Chem-Asian J., 2015,10:2352. https://www.ncbi.nlm.nih.gov/pubmed/26211904

doi: 10.1002/asia.201500704 pmid: 26211904
[18]
Chen H, Ma X, Wu S F, Tian H . Angew. Chem., 2014,126:14373.
[19]
Zhang Q W, Qu D H, Wu J C, Ma X, Wang Q C, Tian H . Langmuir, 2013,29:5345. https://www.ncbi.nlm.nih.gov/pubmed/23560858

doi: 10.1021/la4012444 pmid: 23560858
[20]
Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2014,53:3617. https://www.ncbi.nlm.nih.gov/pubmed/24596338

doi: 10.1002/anie.201310295 pmid: 24596338
[21]
Miyamae K, Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2015,54:8984.
[22]
Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A . Macromolecules, 2015,48:732.
[23]
Nakahata M, Takashima Y, Harada A . Macromol. Rapid Comm., 2015,37:86.
[24]
Zheng Y T, Kobayashi Y, Sekine T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A . Nat. Commun., 2018, DOI: 10.1038/s42004-017-0003-x.
[25]
Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A . Macromolecules, 2017,50:3254.
[26]
Koyanagi K, Takashima Y, Yamaguchi H, Harada A . Macromolecules, 2017,50:5695.
[27]
Nakahata M, Takashima Y, Yamaguchi H, Harada A . Nat. Commun., 2011,2:511. https://www.ncbi.nlm.nih.gov/pubmed/22027591

doi: 10.1038/ncomms1521 pmid: 22027591
[28]
Zhang Y N, Yang D, Han J L, Zhou J, Jin Q X, Liu M H, Duan P F . Langmuir, 2018,34:5821. https://www.ncbi.nlm.nih.gov/pubmed/29672070

doi: 10.1021/acs.langmuir.8b01035 pmid: 29672070
[29]
Li Y Y, Liu J, Du G Y, Yan H, Wang H Y, Zhang H C, An W, Zhao W J, Sun T, Xin F F, Kong L, Li Y M, Hao A Y, Hao J C . J. Phys. Chem. B, 2010,114:10321. https://www.ncbi.nlm.nih.gov/pubmed/20701367

doi: 10.1021/jp1017373 pmid: 20701367
[30]
Li Y Y, Zhao W J, Zhang H C, Sun T, An W, Xin F F, Hao A Y . Chinese Chem. Lett., 2010,21:1251.
[31]
Zhao W J, Li Y Y, Sun T, Yan H, Hao A Y, Xin F F, Zhang H C, An W, Kong L, Li Y M . Colloids Surf. A, 2011,374:115.
[32]
Xin F F, Zhang H C, Hao B X, Sun T, Kong L, Li Y M, Hou Y H, Li S Y, Zhang Y, Hao A Y . Colloids Surf. A, 2012,410:18. https://linkinghub.elsevier.com/retrieve/pii/S0927775712003974

doi: 10.1016/j.colsurfa.2012.06.008
[33]
Xing P Y, Chu X X, Li S Y, Xin F F, Ma M F, Hao A Y . New J. Chem., 2013,37:3949. http://xlink.rsc.org/?DOI=c3nj00984j

doi: 10.1039/c3nj00984j
[34]
Li Z L, Liu W Q, Hao A Y . Colloids Surf. A, 2014,451:25. https://linkinghub.elsevier.com/retrieve/pii/S0927775714002829

doi: 10.1016/j.colsurfa.2014.03.044
[35]
Li Z L, Hao A Y, Li X . J. Mol. Liq., 2014,196:52. https://linkinghub.elsevier.com/retrieve/pii/S0167732214001263

doi: 10.1016/j.molliq.2014.03.025
[36]
Kong L, Xing P Y, Chu X X, Hao A Y . J. Control. Release 2017,259:e77.
[37]
Hou Y H, Xin F F, Yin M J, Kong L, Zhang H C, Sun T, Xing P Y, Hao A Y . Colloids Surf. A, 2012,414:160. https://linkinghub.elsevier.com/retrieve/pii/S0927775712005420

doi: 10.1016/j.colsurfa.2012.08.011
[38]
Xing P Y, Chu X X, Li S Y, Hou Y H, Ma M F, Yang J S, Hao A Y . RSC Adv., 2013,3:22087. http://xlink.rsc.org/?DOI=c3ra42587h

doi: 10.1039/c3ra42587h
[39]
Hou Y H, Li S Y, Sun T, Yang J S, Xing P Y, Liu W Q, Hao A Y . J. Incl. Phenom. Macrocycl. Chem. 2014,80:217. http://link.springer.com/10.1007/s10847-013-0379-x

doi: 10.1007/s10847-013-0379-x
[40]
Kong L, Sun T, Xin F F, Zhao W J, Zhang H C, Li Z L, Li Y M, Hou Y H, Li S Y, Hao A Y . Colloids Surf. A, 2011,392:156. https://linkinghub.elsevier.com/retrieve/pii/S0927775711006212

doi: 10.1016/j.colsurfa.2011.09.049
[41]
Liu W Q, Xing P Y, Xin F F, Hou Y H, Sun T, Hao J C, Hao A Y . J. Phys. Chem. B, 2012,116:13106. https://www.ncbi.nlm.nih.gov/pubmed/23051026

doi: 10.1021/jp306462z pmid: 23051026
[42]
Ma X, Tian H . Acc. Chem. Res., 2014,47:1971. https://www.ncbi.nlm.nih.gov/pubmed/24669851

doi: 10.1021/ar500033n pmid: 24669851
[43]
Qu D H, Wang Q C, Ren J, Tian H . Org. Lett., 2004,6:2085. https://www.ncbi.nlm.nih.gov/pubmed/15200291

doi: 10.1021/ol049605g pmid: 15200291
[44]
Li Y G, Liu M . H. J. Colloid Interf. Sci., 2007,306:386. https://www.ncbi.nlm.nih.gov/pubmed/17140595

doi: 10.1016/j.jcis.2006.10.055 pmid: 17140595
[45]
Ma X, Cao J J, Wang Q C, Tian H . Chem. Commun., 2011,47:3559. https://www.ncbi.nlm.nih.gov/pubmed/21321705

doi: 10.1039/c0cc05488g pmid: 21321705
[46]
Xing P Y, Sun T, Li S Y, Hao A Y, Su J, Hou Y H . Colloids Surf. A, 2013,421:44.
[47]
Hou Y H, Sun T, Xin F F, Xing P Y, Li S Y, Hao A Y . J. Incl. Phenom. Macrocycl. Chem., 2014,79:133.
[48]
Chu X X, Xing P Y, Li S Y, Ma M F, Hao A Y . Colloids Surf. A, 2014,461:11. https://linkinghub.elsevier.com/retrieve/pii/S0927775714006347

doi: 10.1016/j.colsurfa.2014.07.028
[49]
Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith S M, Takaha T . Chem. Rev., 1998,5:1787.
[50]
Xin F F, Xing P Y, Li S Y, Hou Y H, Hao A Y . RSC Adv., 2013,3:21959. http://xlink.rsc.org/?DOI=c3ra43242d

doi: 10.1039/c3ra43242d
[51]
Chen Y, Zhang Y M, Liu Y . Chem. Commun., 2010,46:5622. https://www.ncbi.nlm.nih.gov/pubmed/20585706

doi: 10.1039/c0cc00690d pmid: 20585706
[52]
Gao Y A, Zhao X Y, Dong B, Zheng L Q, Li N, Zhang S H . J. Phys. Chem. B, 2006,110:8576. https://pubs.acs.org/doi/10.1021/jp057478f

doi: 10.1021/jp057478f
[53]
Li Z L, Hao A Y, Hao J C . Colloids Surf. A, 2014,441:8. https://linkinghub.elsevier.com/retrieve/pii/S0927775713006894

doi: 10.1016/j.colsurfa.2013.08.078
[54]
Xing P Y, Li S Y, Xin F F, Hou Y H, Hao A Y, Sun T, Su J . Carbohydra. Res., 2016,367:18. https://www.ncbi.nlm.nih.gov/pubmed/23291275

doi: 10.1016/j.carres.2012.11.023 pmid: 23291275
[55]
Li Z L, Zhang B, Jia S H, Ma M F, Hao J C . J. Mol. Liq., 2018,250:19. https://linkinghub.elsevier.com/retrieve/pii/S0167732217353813

doi: 10.1016/j.molliq.2017.11.154
[56]
Kong L, Zhang F, Xing P Y, Chu X X, Hao A Y . Colloids Surf. A, 2017,522:577. https://linkinghub.elsevier.com/retrieve/pii/S0927775717302510

doi: 10.1016/j.colsurfa.2017.03.016
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[5] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[6] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[7] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[8] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[9] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[10] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[11] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[12] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[13] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[14] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.