中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1528-1539 DOI: 10.7536/PC190708 Previous Articles   Next Articles

Photo-Controlled Supramolecular Assemblies Based on Azo Group

Yao-Hua Liu, Yu Liu**()   

  1. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Online: Published:
  • Contact: Yu Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21432004); National Natural Science Foundation of China(21772099); National Natural Science Foundation of China(21861132001)
Richhtml ( 34 ) PDF ( 1059 ) Cited
Export

EndNote

Ris

BibTeX

Azo compounds are a class of trans-cis(E/Z) photoisomerization compounds which have advantages of simple synthesis, high isomerization rate and efficiency, and resistance to photobleaching. Due to their outstanding photoisomeric properties and ability to form stable inclusion complexes with macrocyclic hosts, azo compounds have shown great potential application in many fields. In this review, we show the design principles, assembly mechanism, application and development of the photo-controlled supramolecular assemblies in topologically morphological regulation, drug delivery, smart materials and so on, which are constructed by host-guest interaction using azo modified cyclodextrin, bis-cyclodextrin bridged by azobenzene, crown ether derivatives, azo aromatic macrocyclic compounds as the hosts or azobenzene or azobenzene derivatives as guests. At the same time, we also discuss the opportunities and challenges of the development of such supramolecular assemblies, and hope to further promote the development of intelligent supramolecular assemblies.

Fig. 1 a) Several typical macrocyclic hosts and b) azo compounds and their supramolecular assemblies with cyclodextrins[40,41,42]. Reproduced with permission. Copyright 2019, Wiley-VCH.
Fig. 2 Photocontrolled supramolecular assemblies of microtubules[43]. Reproduced with permission. Copyright 2019, Wiley-VCH.
Fig. 3 A half adder based on a photocontrolled [2]rotaxane[50]
Fig. 4 A double INHIBIT logic gate based on a photocontrolled [2]rotaxane[51]
Fig. 5 Photoresponsive heteroternary supramolecular assemblies based on azobenzene, methylviologen and CB[8][73]
Fig. 6 Tunable nanosupramolecular aggregates based on azobenzene and dipeptide[82]. Reproduced with permission. Copyright 2016, Wiley-VCH.
Fig. 7 Photoresponsive supramolecular assembly based on pillar[6]arene and azo compounds[84]. Reproduced with permission. Copyright 2012, American Chemical Society.
Fig. 8 Light-triggered crystallization of a molecular host-guest complex[90]. Reproduced with permission. Copyright 2010, American Chemical Society.
Fig. 9 a) Photocontrolled reversible conversion of nanotube and nanoparticle[97]. Reproduced with permission. Copyright 2015, Wiley-VCH. b) Tunable supramolecular assembly and photoswitchable conversion of 1D and 2D nanostructures[98]. Reproduced with permission. Copyright 2017, Wiley-VCH.
Fig. 10 Photocontrolled morphological conversion and chiral transfer of a snowflake-like supramolecular assembly[110]. Reproduced with permission. Copyright 2019, The Royal Society of Chemistry.
Fig. 11 Phototunable supramolecular catalyst based on crown ether bridged by azobenzene[111]. Reproduced with permission. Copyright 2003, American Chemical Society
Fig. 12 A dual-responsive receptor for aryl dianion encapsulation based on azobenzene[116]. Reproduced with permission. Copyright 2019, American Chemical Society.
[1]
Ariga K, Kunitake T . Supramolecular Chemistry: Fundamentals and Applications: Advanced Textbook. Heidelberg: Springer, 2006.
[2]
刘育(Liu Y), 刘育, 张衡益(Zhang H Y) . 超分子化学-合成受体的分子识别与组装(Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001.
[3]
Ma X, Zhao Y L . Chem. Rev., 2015,115:7794. https://www.ncbi.nlm.nih.gov/pubmed/25415447

doi: 10.1021/cr500392w pmid: 25415447
[4]
赵金(Zhao J), 刘育(Liu Y) . 化学进展(Progress in Chemistry), 2015,27(6):687.
[5]
Chen Y, Liu Y . Adv. Mater, 2015,27:5403. https://www.ncbi.nlm.nih.gov/pubmed/26270410

doi: 10.1002/adma.201501216 pmid: 26270410
[6]
Chen Y, Huang F, Li Z T, Liu Y . Sci. China. Chem., 2018,61:979. https://doi.org/10.1007/s11426-018-9337-4

doi: 10.1007/s11426-018-9337-4
[7]
Zhang T, Liu Y H, Hu B W, Zhang C H, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30, 949 https://linkinghub.elsevier.com/retrieve/pii/S1001841718304996

doi: 10.1016/j.cclet.2018.12.029
[8]
Zhang L, Zhang Y M, Liu G X, Liu Y . Chin. Chem. Lett., 2019,30:120. https://linkinghub.elsevier.com/retrieve/pii/S1001841718301797

doi: 10.1016/j.cclet.2018.04.028
[9]
Li P Y, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30:1190. https://linkinghub.elsevier.com/retrieve/pii/S1001841719301305

doi: 10.1016/j.cclet.2019.03.035
[10]
Zhang Y M, Xu Q Y, Liu Y . Sci. Chi. Chem., 2019,62:549.
[11]
Zhao Q, Chen Y, Liu Y . Chin. Chem. Lett., 2018,29:84. https://linkinghub.elsevier.com/retrieve/pii/S1001841717302693

doi: 10.1016/j.cclet.2017.07.024
[12]
Mura S, Nicolas J, Couvreur P . Nat. Mater, 2013,12:991. https://www.ncbi.nlm.nih.gov/pubmed/24150417

doi: 10.1038/nmat3776 pmid: 24150417
[13]
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri S M, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref A R, Haghani L, Bahrami S, Hamblin M R . Chem. Soc. Rev., 2016,45:1457. https://www.ncbi.nlm.nih.gov/pubmed/26776487

doi: 10.1039/c5cs00798d pmid: 26776487
[14]
Houk K N, Leach A G, Kim S P, Zhang X . Angew. Chem. Int. Ed., 2003,42:4872. https://www.ncbi.nlm.nih.gov/pubmed/14579432

doi: 10.1002/anie.200200565 pmid: 14579432
[15]
Zhang Y M, Liu Y H, Liu Y . Adv. Mater, 2019: 1806158.
[16]
Stoddart J F . Angew. Chem. Int. Ed., 2014,53:11102. https://www.ncbi.nlm.nih.gov/pubmed/25257242

doi: 10.1002/anie.201408043 pmid: 25257242
[17]
Tian H, Wang Q C . Chem. Soc. Rev., 2006,35:361. https://www.ncbi.nlm.nih.gov/pubmed/16565753

doi: 10.1039/b512178g pmid: 16565753
[18]
Kinbara K, Aida T . Chem. Rev, 2005,105:1377. https://www.ncbi.nlm.nih.gov/pubmed/15826015

doi: 10.1021/cr030071r pmid: 15826015
[19]
Fahrenbach A C, Warren S C, Incorvati J T, Avestro A J, Barnes J C, Stoddart J F, Grzybowski B A . Adv. Mater., 2013,25:331. https://www.ncbi.nlm.nih.gov/pubmed/22933356

doi: 10.1002/adma.201201912 pmid: 22933356
[20]
De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W . Chem. Rev., 2009,109:5687. https://www.ncbi.nlm.nih.gov/pubmed/19769364

doi: 10.1021/cr900181u pmid: 19769364
[21]
Szymański W, Beierle J M, Kistemaker H A, Velema W A, Feringa B L . Chem. Rev., 2013,113:6114. https://www.ncbi.nlm.nih.gov/pubmed/23614556

doi: 10.1021/cr300179f pmid: 23614556
[22]
Dürr H, Bouas-Laurent H . Photochromism: Molecules and Systems. New York, Elsevier: 2003.
[23]
Mayer G, Heckel A . Angew. Chem. Int. Ed., 2006,45:4900. https://www.ncbi.nlm.nih.gov/pubmed/16826610

doi: 10.1002/anie.200600387 pmid: 16826610
[24]
Zhang J, Wang J, Tian H . Mater. Horiz, 2014,1:169. 42afe2af-cad3-43ad-b7b5-1f875b2d4a61http://dx.doi.org/10.1039/c3mh00031a

doi: 10.1039/c3mh00031a
[25]
Qu D H, Wang Q C, Zhang Q W, Ma X, Tian H . Chem. Rev, 2015,115:7543. https://www.ncbi.nlm.nih.gov/pubmed/25697681

doi: 10.1021/cr5006342 pmid: 25697681
[26]
Yao X Y, Li T, Wang J, Ma X, Tian H . Adv. Optical. Mater., 2016,4:1322. http://doi.wiley.com/10.1002/adom.201600281

doi: 10.1002/adom.201600281
[27]
Zhang J J, Zou Q, Tian H . Adv. Mater, 2013,25:378. https://www.ncbi.nlm.nih.gov/pubmed/22911949

doi: 10.1002/adma.201201521 pmid: 22911949
[28]
Credi A . Chem. Soc. Rev., 2014,43:4003. https://www.ncbi.nlm.nih.gov/pubmed/24817662

doi: 10.1039/c4cs90032d pmid: 24817662
[29]
Yu Y, Nakano M, Ikeda T . Nature, 2003,425:145. https://www.ncbi.nlm.nih.gov/pubmed/12968169

doi: 10.1038/425145a pmid: 12968169
[30]
Ikeda T, Tsutsumi O . Science, 1995,268:1873. https://www.ncbi.nlm.nih.gov/pubmed/17797528

doi: 10.1126/science.268.5219.1873 pmid: 17797528
[31]
Hugel T, Holland N B, Cattani A, Moroder L, Seitz M, Gaub H E . Science, 2002,296:1103. https://www.ncbi.nlm.nih.gov/pubmed/12004125

doi: 10.1126/science.1069856 pmid: 12004125
[32]
Natansohn A, Rochon P . Chem. Rev, 2002,102:4139. https://www.ncbi.nlm.nih.gov/pubmed/12428986

doi: 10.1021/cr970155y pmid: 12428986
[33]
Beharry A A, Woolley G A . Chem. Soc. Rev., 2011,40:4422. https://www.ncbi.nlm.nih.gov/pubmed/21483974

doi: 10.1039/c1cs15023e pmid: 21483974
[34]
Bortolus P, Monti S . J. Phys. Chem., 1987,91:5046. https://pubs.acs.org/doi/abs/10.1021/j100303a032

doi: 10.1021/j100303a032
[35]
Biedermann F, Uzunova V D, Scherman O A, Nau W M, De Simone A . J. Am. Chem. Soc., 2012,134, 15318. https://www.ncbi.nlm.nih.gov/pubmed/22881280

doi: 10.1021/ja303309e pmid: 22881280
[36]
Xue M, Yang Y, Chi X, Zhang Z, Huang F . Acc. Chem. Res., 2012,45, 1294. https://www.ncbi.nlm.nih.gov/pubmed/22551015

doi: 10.1021/ar2003418 pmid: 22551015
[37]
Li Z, Liang J, Xue W, Liu G, Liu S H, Yin J . Supramol. Chem, 2013,26:54. http://www.tandfonline.com/doi/abs/10.1080/10610278.2013.822970

doi: 10.1080/10610278.2013.822970
[38]
Wagner-Wysiecka E, Lukasik N, Biernat J F, Luboch E . J. Incl. Phenom. Macrocycl. Chem., 2018,90:189. https://www.ncbi.nlm.nih.gov/pubmed/29568230

doi: 10.1007/s10847-017-0779-4 pmid: 29568230
[39]
Geng W C, Sun H W, Guo D S . J. Incl. Phenom. Macrocycl. Chem., 2018,92:1. https://doi.org/10.1007/s10847-018-0819-8

doi: 10.1007/s10847-018-0819-8
[40]
Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A . Nat. Commun, 2012,3:603. https://www.ncbi.nlm.nih.gov/pubmed/22215078

doi: 10.1038/ncomms1617 pmid: 22215078
[41]
Stricker L, Fritz E C, Peterlechner M, Doltsinis N L, Ravoo B J . J. Am. Chem. Soc., 2016,138:4547. https://www.ncbi.nlm.nih.gov/pubmed/26972671

doi: 10.1021/jacs.6b00484 pmid: 26972671
[42]
Wang D, Wagner M, Saydjari A K, Mueller J, Winzen S, Butt H J, Wu S . Chem. Eur. J., 2017,23:2628. https://www.ncbi.nlm.nih.gov/pubmed/27925694

doi: 10.1002/chem.201604634 pmid: 27925694
[43]
Zhang Y M, Zhang N Y, Xiao K, Yu Q L, Liu Y . Angew. Chem. Int. Ed., 2018,57:8649. https://www.ncbi.nlm.nih.gov/pubmed/29781242

doi: 10.1002/anie.201804620 pmid: 29781242
[44]
Zhang W, Chen Y, Yu J, Zhang X J, Liu Y . Chem. Coummun, 2016,52:14274.
[45]
Yu Q L, Zhang Y M, Liu Y H, Xu X, Liu Y . Sci. Adv, 2018, 4: eaat279.
[46]
Sun H L, Zhang H Y, Dai Z, Han X, Liu Y . Chem. Asian J., 2017,12:265. https://www.ncbi.nlm.nih.gov/pubmed/27897389

doi: 10.1002/asia.201601545 pmid: 27897389
[47]
Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y . J. Org. Chem., 2013,78:5110. https://www.ncbi.nlm.nih.gov/pubmed/23631633

doi: 10.1021/jo400772j pmid: 23631633
[48]
Zhao J, Zhang Y M, Sun H L, Chang X Y, Liu Y . Chem. Eur. J., 2014,20:15108. https://www.ncbi.nlm.nih.gov/pubmed/25284456

doi: 10.1002/chem.201404216 pmid: 25284456
[49]
Ma X, Tian H . Chem. Soc. Rev., 2010,39:70. https://www.ncbi.nlm.nih.gov/pubmed/20023838

doi: 10.1039/b901710k pmid: 20023838
[50]
Qu D H, Wang Q C, Tian H . Angew. Chem. Int. Ed., 2005,44:5296. https://www.ncbi.nlm.nih.gov/pubmed/16037997

doi: 10.1002/anie.200501215 pmid: 16037997
[51]
Qu D H, Ji F Y, Wang Q C, Tian H . Adv. Mater, 2006,18:2035. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[52]
Qu D H, Wang Q C Ren J, Tian H . Org. Lett., 2004,6:2085. https://www.ncbi.nlm.nih.gov/pubmed/15200291

doi: 10.1021/ol049605g pmid: 15200291
[53]
Qu D H, Wang Q C, Tian H . Mol. Cryst. Liq. Cryst., 2005,430:59. http://www.tandfonline.com/doi/abs/10.1080/15421400590946172

doi: 10.1080/15421400590946172
[54]
Qu D H, Wang Q C, Ma X, Tian H . Chem. Eur. J., 2005,11:5929. https://www.ncbi.nlm.nih.gov/pubmed/16044474

doi: 10.1002/chem.200401313 pmid: 16044474
[55]
Wang Q C, Ma X, Qu D H, Tian H . Chem. Eur. J., 2006,12:1088. https://www.ncbi.nlm.nih.gov/pubmed/16245374

doi: 10.1002/chem.200500415 pmid: 16245374
[56]
Zhu L, Lu M, Zhang Q, Qu D, Tian H . Macromolecules, 2011,44:4092. https://pubs.acs.org/doi/10.1021/ma200825t

doi: 10.1021/ma200825t
[57]
Sun R, Xue C, Ma X, Gao M, Tian H, Li Q . J. Am. Chem. Soc., 2013,135:5990. https://www.ncbi.nlm.nih.gov/pubmed/23574492

doi: 10.1021/ja4016952 pmid: 23574492
[58]
Chen H, Ma X, Wu S, Tian H . Angew. Chem., Int. Ed., 2014,53:14149. https://www.ncbi.nlm.nih.gov/pubmed/25323299

doi: 10.1002/anie.201407402 pmid: 25323299
[59]
Zhu L, Lu M, Qu D, Wang Q, Tian H . Org. Biomol. Chem., 2011,9:4226. https://www.ncbi.nlm.nih.gov/pubmed/21505684

doi: 10.1039/c0ob01124j pmid: 21505684
[60]
Zhu L, Zhang D, Qu D, Wang Q, Ma X, Tian H . Chem. Commun, 2010,46:2587. https://www.ncbi.nlm.nih.gov/pubmed/20449316

doi: 10.1039/b926323c pmid: 20449316
[61]
Sun R, Ma X . Tetrahedron, 2013,69:1069. https://linkinghub.elsevier.com/retrieve/pii/S004040201201784X

doi: 10.1016/j.tet.2012.11.066
[62]
Ma X, Wang Q, Qu D, Xu Y, Ji F, Tian H . Adv. Funct. Mater., 2007,17, 829 http://doi.wiley.com/10.1002/%28ISSN%291616-3028

doi: 10.1002/(ISSN)1616-3028
[63]
Zhu L, Ma X, Ji F, Wang Q, Tian H . Chem. Eur. J., 2007,13:9216. https://www.ncbi.nlm.nih.gov/pubmed/17939177

doi: 10.1002/chem.200700860 pmid: 17939177
[64]
Harada A, Takashiam Y, Nakahata M . Acc. Chem. Res., 2014,47:2128. https://www.ncbi.nlm.nih.gov/pubmed/24911321

doi: 10.1021/ar500109h pmid: 24911321
[65]
Takashiam Y, Harada A . J. Incl. Phenom. Macrocycl. Chem., 2017,87:313. http://link.springer.com/10.1007/s10847-017-0702-z

doi: 10.1007/s10847-017-0702-z
[66]
Tomatsu I, Hashidzume A, Harada A . Angew. Chem. Int. Ed., 2006,45:4605. https://www.ncbi.nlm.nih.gov/pubmed/16791894

doi: 10.1002/anie.200601081 pmid: 16791894
[67]
Taura D, Li S, Hashidzume A, Harada A . Macromolecules, 2010,43, 1706 https://pubs.acs.org/doi/10.1021/ma902712u

doi: 10.1021/ma902712u
[68]
Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A . Chem. Lett, 2004,33:890. http://www.journal.csj.jp/doi/10.1246/cl.2004.890

doi: 10.1246/cl.2004.890
[69]
Tomatsu I, Hashidzume A, Harada A . J. Am. Chem. Soc., 2006,128:2226. https://www.ncbi.nlm.nih.gov/pubmed/16478172

doi: 10.1021/ja058345a pmid: 16478172
[70]
Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A . Angew. Chem. Int. Ed., 2010,49:7461. https://www.ncbi.nlm.nih.gov/pubmed/20821785

doi: 10.1002/anie.201003567 pmid: 20821785
[71]
Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A . Nat. Commun, 2012,3:1270. https://www.ncbi.nlm.nih.gov/pubmed/23232400

doi: 10.1038/ncomms2280 pmid: 23232400
[72]
Wang H, Zhu C N, Zeng H, Ji X F, Xie T, Yan X Z, Wu Z L, Huang F H . Adv. Mater., 2019,31:1807328. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12
[73]
Tian F, Jiao D, Biedermann F, Scherman O A . Nat. Commun., 2012,3:1207. https://www.ncbi.nlm.nih.gov/pubmed/23149751

doi: 10.1038/ncomms2198 pmid: 23149751
[74]
del Barrio J, Horton P N, Lairez D, Lloyd G O, Toprakcioglu C, Scherman O A . J. Am. Chem. Soc., 2013,135:1760. https://www.ncbi.nlm.nih.gov/pubmed/23272702

doi: 10.1021/ja3087054 pmid: 23272702
[75]
Lan Y, Wu Y, Karas A, Scherman O A . Angew. Chem. Int. Ed., 2014,53:2166. https://www.ncbi.nlm.nih.gov/pubmed/24446350

doi: 10.1002/anie.201309204 pmid: 24446350
[76]
del Barrio J, Blasco E, Toprakcioglu C, Koutsioubas A, Scherman O A, Oriol L, Sánchez-Somolinos C . Macromolecules, 2014,47:897. https://pubs.acs.org/doi/10.1021/ma402369p

doi: 10.1021/ma402369p
[77]
Tan C S Y, del Barrio J, Liu J, Scherman O A . Polym. Chem., 2015,6:7652. http://xlink.rsc.org/?DOI=C5PY01115A

doi: 10.1039/C5PY01115A
[78]
Hu C, West K R, Scherman O A . Nanoscale, 2016,8:7840. https://www.ncbi.nlm.nih.gov/pubmed/27010833

doi: 10.1039/c6nr01016d pmid: 27010833
[79]
Hu C, Liu J, Wu Y, West K R, Scherman O A . Small, 2018,14:1703352. http://doi.wiley.com/10.1002/smll.201703352

doi: 10.1002/smll.201703352
[80]
Nicolas H, Yuan B, Zhang X, Schönhoff M . Langmuir, 2016,32:2410. https://www.ncbi.nlm.nih.gov/pubmed/26891704

doi: 10.1021/acs.langmuir.6b00128 pmid: 26891704
[81]
Yang L, Bai Y, Tian X, Wang Z, Zhang X . ACS Macro. Lett., 2015,4:611. https://pubs.acs.org/doi/10.1021/acsmacrolett.5b00266

doi: 10.1021/acsmacrolett.5b00266
[82]
Zhang W, Zhang Y M, Li S H, Cui Y L, Yu J, Liu Y . Angew. Chem. Int. Ed., 2016,55:11452. https://www.ncbi.nlm.nih.gov/pubmed/27527684

doi: 10.1002/anie.201605420 pmid: 27527684
[83]
Cheng H B, Zhang Y M, Xu C, Liu Y . Sci. Rep, 2014,4:4210. https://www.ncbi.nlm.nih.gov/pubmed/24572680

doi: 10.1038/srep04210 pmid: 24572680
[84]
Yu G C, Han C Y, Zhang Z B, Chen J Z, Yan X Z, Zheng B, Liu S Y, Huang F H . J. Am. Chem. Soc., 2012,134:8711. https://www.ncbi.nlm.nih.gov/pubmed/22540829

doi: 10.1021/ja302998q pmid: 22540829
[85]
Xia D Y, Yu G C, Li J Y, Huang F H . Chem. Commun., 2014,50:3606. https://www.ncbi.nlm.nih.gov/pubmed/24575431

doi: 10.1039/c3cc49686d pmid: 24575431
[86]
Chi X D, Ji X F, Xia D Y, Huang F H . J. Am. Chem. Soc., 2015,137, 1440. https://www.ncbi.nlm.nih.gov/pubmed/25590459

doi: 10.1021/ja512978n pmid: 25590459
[87]
Ogoshi T, Kida K, Yamagishi T . J. Am. Chem. Soc., 2012,134:20146. https://www.ncbi.nlm.nih.gov/pubmed/23163776

doi: 10.1021/ja3091033 pmid: 23163776
[88]
Zhang C C, Li S H, Zhang C F, Liu Y . Sci. Rep, 2016,6:37014. https://www.ncbi.nlm.nih.gov/pubmed/27849055

doi: 10.1038/srep37014 pmid: 27849055
[89]
Clever G H, Tashiro S, Shionoya M . Angew. Chem. Int. Ed., 2009,48:7010. https://www.ncbi.nlm.nih.gov/pubmed/19681085

doi: 10.1002/anie.200902717 pmid: 19681085
[90]
Clever G H, Tashiro S, Shionoya M . J. Am. Chem. Soc., 2010,132:9973. https://www.ncbi.nlm.nih.gov/pubmed/20604553

doi: 10.1021/ja103620z pmid: 20604553
[91]
Dube H, Ams M R, Rebek J . J. Am. Chem. Soc., 2010,132:9984. https://www.ncbi.nlm.nih.gov/pubmed/20608653

doi: 10.1021/ja103912a pmid: 20608653
[92]
Dube H, Ams M R, Rebek J . Angew. Chem. Int. Ed., 2010,49:3192. https://www.ncbi.nlm.nih.gov/pubmed/20309989

doi: 10.1002/anie.201000876 pmid: 20309989
[93]
Coskun A, Friedman D C, Li H, Patel K, Khatib H A, Stoddart J F . J. Am. Chem. Soc., 2009,131:2493. https://www.ncbi.nlm.nih.gov/pubmed/19193031

doi: 10.1021/ja809225e pmid: 19193031
[94]
Avellini T, Li H, Coskun A, Barin G, Trabolsi A, Basuray A N, Dey S K, Credi A, Silvi S, Stoddart J F, Venturi M . Angew. Chem. Int. Ed., 2012,51:1611. https://www.ncbi.nlm.nih.gov/pubmed/22213358

doi: 10.1002/anie.201107618 pmid: 22213358
[95]
Baroncini M, Silvi S, Venturi M, Credi A . Angew. Chem. Int. Ed., 2012,51:4223. https://www.ncbi.nlm.nih.gov/pubmed/22407954

doi: 10.1002/anie.201200555 pmid: 22407954
[96]
Liu Y, Kang S, Chen Y, Yang Y W, Huskens J . J. Incl. Phenom. Macrocycl. Chem., 2006,56:197. http://link.springer.com/10.1007/s10847-006-9083-4

doi: 10.1007/s10847-006-9083-4
[97]
Sun H L, Chen Y, Zhao J, Liu Y . Angew. Chem. Int. Ed., 2015,54:9376. https://www.ncbi.nlm.nih.gov/pubmed/26089230

doi: 10.1002/anie.201503614 pmid: 26089230
[98]
Sun H L, Chen Y, Han X, Liu Y . Angew. Chem. Int. Ed., 2017,56:7062. https://www.ncbi.nlm.nih.gov/pubmed/28517106

doi: 10.1002/anie.201612629 pmid: 28517106
[99]
Iwaso K, Takashiam Y, Harada A . Nat. Chem, 2016,8:625. https://www.ncbi.nlm.nih.gov/pubmed/27219709

doi: 10.1038/nchem.2513 pmid: 27219709
[100]
Takashima Y, Hayashi Y, Osaki M, Kaneko F, Yamaguchi H, Harada A . Macromolecules, 2018,51:4688. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00939

doi: 10.1021/acs.macromol.8b00939
[101]
Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A . J. Am. Chem. Soc., 2007,129:6396. https://www.ncbi.nlm.nih.gov/pubmed/17461590

doi: 10.1021/ja071717q pmid: 17461590
[102]
Ma X, Cao J, Wang Q, Tian H . Chem. Commun, 2011,47:3559. https://www.ncbi.nlm.nih.gov/pubmed/21321705

doi: 10.1039/c0cc05488g pmid: 21321705
[103]
Di Motta S, Avellini T, Silvi S, Venturi M, Ma X, Tian H, Credi A, Negri F . Chem. Eur. J., 2013,19:3131. https://www.ncbi.nlm.nih.gov/pubmed/23325701

doi: 10.1002/chem.201203676 pmid: 23325701
[104]
Cao J, Ma X, Min M, Cao T, Wu S, Tian H . Chem. Commun, 2014,50:3224. https://www.ncbi.nlm.nih.gov/pubmed/24522372

doi: 10.1039/c3cc49820d pmid: 24522372
[105]
Ma X, Qu D H, Ji F, Wang Q C, Zhu L, Xu Y, Tian H . Chem. Commun, 2007,14:1409. https://www.ncbi.nlm.nih.gov/pubmed/17389975

doi: 10.1039/b615900a pmid: 17389975
[106]
Ma X, Wang Q C, Tian H . Tetrahedron Lett, 2007,48:7112. a5fc15cc-135c-4599-8594-334d5604f0e4http://www.sciencedirect.com/science/article/pii/S0040403907015547

doi: 10.1016/j.tetlet.2007.07.209
[107]
Gao C, Ma X, Zhang Q, Wang Q C, Qu D H, Tian H . Org. Biomol. Chem., 2011,9:1126. https://www.ncbi.nlm.nih.gov/pubmed/21183982

doi: 10.1039/c0ob00764a pmid: 21183982
[108]
Zhou Y, Zhang H Y, Zhang Z Y, Liu Y . J. Am. Chem. Soc., 2017,139:7168. https://www.ncbi.nlm.nih.gov/pubmed/28509539

doi: 10.1021/jacs.7b03153 pmid: 28509539
[109]
Zhou Y, Zhang H Y, Liu Y . J. Photochem. Photobio. A, 2018,355:242. https://linkinghub.elsevier.com/retrieve/pii/S1010603017310900

doi: 10.1016/j.jphotochem.2017.09.024
[110]
Wang H J, Zhang H Y, Wu H, Dai X Y, Li P Y, Liu Y . Chem. Commun, 2019,55:4499. https://www.ncbi.nlm.nih.gov/pubmed/30919856

doi: 10.1039/c9cc01874c pmid: 30919856
[111]
Cacciapaglia R, Di Stefano S, Mandolini L . J. Am. Chem. Soc., 2003,125:2224. https://www.ncbi.nlm.nih.gov/pubmed/12590551

doi: 10.1021/ja029331x pmid: 12590551
[112]
Tamaoki N, Wada M . J. Am. Chem. Soc., 2006,128:6284. https://www.ncbi.nlm.nih.gov/pubmed/16683770

doi: 10.1021/ja058398s pmid: 16683770
[113]
Liu M, Yan X Z, Hu M L, Chen X P, Zhang M M, Zheng B, Hu X H, Shao S, Huang F H . Org. Lett., 2010,12:2558. https://www.ncbi.nlm.nih.gov/pubmed/20465232

doi: 10.1021/ol100770j pmid: 20465232
[114]
Ichimura K, Oh S K, Nakagawa M . Science, 2000,288:1624. https://www.ncbi.nlm.nih.gov/pubmed/10834837

doi: 10.1126/science.288.5471.1624 pmid: 10834837
[115]
Ryan S T J, del Barrio J, Suardíaz R, Ryan D F, Rosta E, Scherman O A . Angew. Chem. Int. Ed., 2016,55:16096. https://www.ncbi.nlm.nih.gov/pubmed/27791303

doi: 10.1002/anie.201607693 pmid: 27791303
[116]
Chi X D, Cen W L, Queenan J A, Long L L, Lynch V M, Khashab N M, Sessler J L . J. Am. Chem. Soc., 2019,141:6468. https://www.ncbi.nlm.nih.gov/pubmed/30957995

doi: 10.1021/jacs.9b01241 pmid: 30957995
[1] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[2] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[3] Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen. Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions [J]. Progress in Chemistry, 2017, 29(7): 740-749.
[4] Huang Wenzhong, Zhan Tianguang, Lin Feng, Zhao Xin. Recent Progress in the Construction and Regulation of Supramolecular Polymers Based on Host-Guest Interactions [J]. Progress in Chemistry, 2016, 28(2/3): 165-183.
[5] Zhao Jun, Huang Renliang, Qi Wei, Wang Yuefei, Su Rongxin, He Zhimin. Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications [J]. Progress in Chemistry, 2014, 26(09): 1445-1459.
[6] Peng Liao, Feng Anchao, Wang Hong, Zhang Huijuan, Yuan Jinying. Voltage-Responsive Systems Based on β-Cyclodextrin and Ferrocene [J]. Progress in Chemistry, 2013, 25(11): 1942-1950.
[7] Wan Pengbo, Hill Eric H., Zhang Xi. Interfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces [J]. Progress in Chemistry, 2012, 24(01): 1-7.
[8] Zhang Huacheng, Xin Feifei, Li Yueming, Hao Aiyou, An Wei, Sun Tao. Supramolecular Cyclodextrins Amphiphiles [J]. Progress in Chemistry, 2010, 22(12): 2276-2281.