中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1917-1934 DOI: 10.7536/PC200945   Next Articles

• Review •

Organic Semiconductor Nanostructured Photocatalysts

Chuxuan Yan1, Qinglin Li1, Zhengqi Gong1, Yingzhi Chen1,2(), Luning Wang1,2()   

  1. 1 School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083, China
    2 Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China
  • Received: Revised: Online: Published:
  • Contact: Yingzhi Chen, Luning Wang
  • Supported by:
    National Natural Science Foundation of China(51503014); Fundamental Research Funds for the Central Universities of China(230201818-001A3); Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB(BK19AE027)
Richhtml ( 112 ) PDF ( 1031 ) Cited
Export

EndNote

Ris

BibTeX

Organic semiconductors possess various chemical structures and tailored optoelectronic properties via simple chemical modifications, so increasing use of them are found in efficient visible-light photocatalysis. However, the weak chemical bonds and the poor charge behavior(e.g. notoriously low carrier mobility, short life of charge carriers) intrinsic in them, always incur quite limited efficiency and stability. Therefore, the assembly of them into specific nanostructures or nanocomposites is usually proposed to enhance their optoelectronic properties, as well as the photocatalytic efficiency and reliability. Zero-dimensional(0D) nanoparticles are low in size and hence high in specific surface area(SSA) ; one-dimensional(1D) nanostructures are usually arranged in an orderly long range thus leading to low surface defect density and higher carrier mobility; two-dimensional(2D) structures are particularly capable of enhancing the photogenerated charge utilization because of their large reaction sites and shortened charge transport length; The heterogeneous interfaces in the nanocomposites can effectively facilitate the special charge separation. All these emphasize their importance in photocatalytic activity and stability. So far, organic nanostructures are increasingly used in the photocatalytic decomposition of pollutants, CO2 reduction, water splitting into oxygen and hydrogen, etc. In this review, the varied organic nanostructures, properties, mechanistic pathways, and the different photocatalytic applications are summarized, and moreover, the challenges and future outlook are also given.

Contents

1 Introduction

2 Physical and chemical properties of organic semiconductors

3 Photocatalytic process

4 Self-assembly of organic molecules

5 Organic nanostructured photocatalysts

5.1 Isolated nanostructures

5.2 Binary nanocomposites

5.3 Multiple nanocomposites

6 Application of organic nanostructured photocatalysts

7 Conclusions and outlook

Fig. 1 Typical absorption ranges of the organic photocatalysts in the UVB-UVA-visible range[45]. Copyright 2012, John Wiley and Sons
Fig. 2 Photocatalytic process diagram[50]. Copyright 2017, John Wiley and Sons
Fig. 3 Nano-assembly of typical organic semiconductors
Fig. 4 (a) Nanocrystal morphology evolution with the surfactant concentration and pH,(b) Photocatalytic activities of Zn porphyrin(ZnTPP) nanocrystals. Tetragonal nanorods with 200 nm length(c), same concentration ZnTPP in DMF(d), same concentration ZnTPP in 0.01 M HCl(e), nanoparticles with 80 nm diameter(f), hexagonal nanowires with 2 μm length(g), hexagonal rods with 400 nm length(h), and hexagonal porous nanodisks(i) for photo degradation of MO molecules under visible light irradiation. The results from blank experiments, where no Zn Porphyrin nanocrystals were used(a) and commercial P25(b) was used are also presented for comparison[64]. Copyright 2014, American Chemical Society
Fig. 5 Schematic diagram of the formation of quasi-spherical Pe nanoparticles. Stage Ⅰ: nucleation; Stage Ⅱ: growth; Stage Ⅲ and Ⅳ: one-dimensional(1D)to three-dimensional(3D)organization[65]. Copyright 2007, American Chemical Society
Fig. 6 SEM images of PPy-NS-c(a,b), PPY-NS-γ(c~d), and PPy-bulk(e,f);(g) Degradation rate of phenol(initial concentration: 0.5 mM) under ultraviolet and visible light;(h) Degradation rate of phenol(initial concentration 0.5 mM) under visible light irradiation for the PPy sample prepared. P25 TiO2 showed high activity under ultraviolet light, while Ag-TiO2 showed high activity under ultraviolet and visible light, which was used as the control group to measure the catalytic activity of PPy samples in the experiment[67]. Copyright 2019, Elsevier
Fig. 7 Schematic of the tentative photocatalytic mechanisms of BCN, CCN, and HCCN[75]. Copyright 2020, Elsevier
Fig. 8 (a) TEM image of Cu/g-C3N4;(b) Photocatalytic degradation of RhB in the presence of pure g-C3N4, Cu/g-C3N4 materials;(c) Photocatalytic activities comparison of Cu/g-C3N4 materials with or without adding EDTA-2Na, BQ and TBA to degrade RhB under visible light irradiation[94]. Copyright 2020, Acta Physico-Chimica. Sinica
Fig. 9 Schematic diagram of three different types of electron-hole pair separation:(a) Straddling gap(type Ⅰ)、(b) Staggered gap(type Ⅱ)、 and(c) Broken gap(type Ⅲ)[97]. Copyright 2012, Royal Society of Chemistry
Fig. 10 (a) Fluorescence spectra of H2TPP(p), CH-PTCDI(n) and H2TPP-CH-PTCDI(p-n) nanostructures;(b) photocatalytic degradation of methyl blue(MB) by different samples under visible light(λ > 400 nm) ;(c) Schematic diagram of photocatalysis of H2TPP-CH-PTCDI nanocomposite structure[98]. Copyright 2013, Royal Society of Chemistry
Fig. 11 (a)The molecular structure of PTCBI and MPc;(b)Absorption spectra of PTCBI/H2Pc and PTCBI/PbPc (400~1000 nm);(c)A long-term optoelectronic solution study of PTCBI/PbPc(the durability of ITO/PTCBI/PbPc was assessed by the amount of H2 precipitated on the Pt counter and the exposure time for one cycle was 1 hour)[99]. Copyright 2017, Elsevier
Fig. 12 (a) Active species capture experiments on CCN1.0;(b) schematic diagram of photocatalytic mechanism of CCN1.0[104]. Copyright 2020, Elsevier
Fig. 13 (a) The chemical structure of 5,10,15,20-four(4-carboxyphenyl) porphyrin(TCPP) ;(b) Photoluminescence spectra of TCPP NR-rGO composites at different concentrations(a-0 μg, b-60 μg, c-100 μg, d-150 μg and e-240 μg) ;(c) Dark current a and photocurrent c of TCPP NR; Dark current b and photocurrent d of TCPP NR-rGO composite system[105]. Copyright 2016, American Chemical Society
Fig. 14 (a)Schematic mechanism for fabricating rGO/pCN heterojunction via an electrostatic self-assembly strategy followed by reduction with NaBH4;(b)Total yield for CH4 production over rGO, pure g-C3N4, pCN, 15rGO/pCN, and 15rGO/CN photocatalysts after 10 h of illumination[107]. Copyright 2015, Elsevier
Fig. 15 Photocatalytic H2 evolution performance over Pt, Co and Pt-Co alloys of different atomic ratios loaded CN at 1 wt% loading amount[112]. Copyright 2020, Acta Physico-Chimica. Sinica
Fig. 16 (a)The structure of the four porphyrin molecules;(b)Visible absorption spectra of pure TiO2 and four kinds of TiO2-porphyrin composite photocatalysts;(c)Photocatalytic degradation curves of MB with pure TiO2 and four kinds of TiO2-porphyrin composite photocatalysts under visible light irradiation[115]. Copyright 2019, Elsevier
Fig. 17 (a) FESEM image of Ag3VO4/Cu-Mof/rGO;(b) Image of AB92 photodegradation rate C/C0 in the presence of different catalysts;(c) Photocatalytic mechanism and charge transfer scheme of Ag3VO4/Cu-Mof/rGO under visible light irradiation[126]. Copyright 2020, Elsevier
Fig. 18 (a) UV-visible diffusive reflectance spectra of the as-prepared samples: TiO2, 4-PySH@TiO2, ZnTCPP@TiO2, PCN-222(Zn) and TP-222(Zn);(b) Calculation of the band gaps of TiO2 and PCN-222(Zn) based on the(αhv)2-Eg curves[138]. Copyright 2017, Royal Society of Chemistry
Fig. 19 (a) TEM image of g-C3N4-NiFeP;(b) average H2 evolution rate over different samples;(c) TRPL spectra and(d) photocurrent responses of EY-sensitized g-C3N4, CN/FeP/g-C3N4, and CN/FeNiP/g-C3N4 composites[143]. Copyright 2019, Elsevier
Fig. 20 Hydrocarbon generation rate in comparison with samples Au@SnS, Au@g-C3N4, and Au@g-C3N4/SnS for 4 h illumination[150]. Copyright 2018, American Chemical Society
Table 1 Preparation, morphology and application of nano organic photocatalyst[24⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~35,53⇓⇓ ~56,129⇓⇓⇓⇓⇓⇓ ~136]
Photocatalyst Preparation method Structure and morphology* Application and efficiency ref
H-type aggregated perylenete-
tracarboxylic diimide(H-PDI);
J-type aggregated perylenete
tracarboxylic diimide(J-PDI)
pH hydrogelation
method
Nanofibers(SSA: 10.05 m2·g-1)
Nanorods( SSA: 16.02 m2·g-1)
phenol photodegradation(50%, 4 h)
phenol photodegradation(negligible)
54
perylene diimide/nanosilica(SN-PDI) covalently anchoring Nanospheres( SSA: 39.9 m2·g-1) Decabromodiphenyl ether(BDE209) photodegradation(100%, 0.5 h) 55
perylene imide/Bi2WO6 (PDI/Bi2WO6) dual transfer approach Nanosheets( SSA: 16.633 m2·g-1) BPA photodegradation(99.7%, 3 h) 56
20-tetrakis[p-(3-N-triethoxysilylpropylureido)phenyl]porphyrin(TiO2/POR-Si) Sol-gel cogelation Crystallite( SSA: 180 m2·g-1) P-nitrophenol(PNP) photodegradation(65%, 24 h) 31
Tetrahydroxyphenyl zinc porphyrin-TiO2(ZnTHPP-TiO2); Tetrahydroxyphenyl zinc porphyrin/TiO2(ZnTHPP/TiO2) Solvothermal in situ
method; Impregnation
method
Nanospheres(size: 30~40 nm) MB photodegradation(75.6%, 100 min); MB photodegradation(61.2%, 100 min) 24
Iron(Ⅲ) meso-tetra(4-carboxyphenyl) porphyrin/TiO2 nanotubes(FeTCPP-TNTs) hydrothermal and
heating reflux process
Nanospheres
(size: 18.26 nm, SSA:
309.45 m2·g-1)
MB photodegradation(90%, 2 h) 35
Tetrakis(4-carboxyphenyl)porphyrin /ZnFe2O4@polythiophene(TCPP/ZnFe@PTh) photosensitize Clusters MO photodegradation(94%, 3 h) 34
6-
5-
dicarbaldehyde(CuTAPP-CMP-OH)
Microwave-assisted Nanospheres(SSA 223.6 m2·g-1) RhB photodegradation(98%, 3 h) 26
polyphenylporphyrin benzobisoxazole
P(PPor-BBO)
polycondensation Nanospheres(size: 90 nm) RhB photodegradation(98%, 2.5 h) 30
20-meso-tetra-(para-amino)-phenyl-
porphyrin(FST-g-TAPP)
Graft modification Clusters(75.127 m2·g-1) RhB photodegradation(96.26%, 1 h) 27
Benzobisoxazole-linked porphyrin-based fully conjugated microporous polymers based on metalloporphyrin(BBO-NiPor-CMP) polycondensation reaction Sheet clusters(SSA: 238 m2·g-1) RhB photodegradation(100%, 2.5 h) 33
Carbon nitride/cobalt tetra-phenyl-porphyrin(CN/Co(Ⅲ)TPP) Self-assembled Lamellar(pore volume: 0.254 cm3·g-1) Nicotinamide cofactors(NADH)
regeneration(87.9%, 1 h)
25
cobalt metallated aminopor-phyrin(GO-Co-ATPP) Solvothermal method Nanospheres(SSA: 13.971 m2·g-1) Formic acid conversion(96.49 μmol, 2 h) 28
g-C3N4 loaded with carbon dots/tetra
(4-carboxyphenyl)porphyrin iron(Ⅲ)
(g-C3N4-Cx/FeTCPP)
mechanical mixing Nanosheets(SSA: 77.5~85.5 m2·g-1) CO evolution(28.3 mmol g-1, 6 h)
H2 evolution(71.1 mmol g-1, 6 h)
32
Zinc-porphyrin/platinum deposited hi-
erarchical porous TiO2(LG5/PHPT)
D-π-A approach Clusters H2 evolution(4196 μmol·g-1·h-1) 29
4-pyrrolopyrrole
dione(DPP-CN);
4-pyrrolopyrrole dione(DPP-CI);
4-pyrrolopyrrole dione
(DPP-PN)
Condensation reaction Strip(size: 176.8 nm)
Flake(size: 316.9 nm)
Strip(size: 285.8 nm )
H2 evolution(569.26 μmol·g-1·h-1)
H2 evolution(361.84 μmol·g-1·h-1)
H2 evolution(Almost none)
53
Pt@CeO2/three-dimensional porous g-C3N4(Pt@CeO2/3DCN) Calcination method Cubes/sheets(SSA: 61.67
m2·g-1)
CO evolution(4.69 μmol·g-1·h-1)
CH4 evolution(3.03 μmol·g-1·h-1)
129
4-
benzenedicarboxylate)/TiO2(CPO-27-Mg/TiO2)
Hydrothermal Self-assembly method Spindle/nanospheres(size:
300~500 nm)
CO evolution(40.9 μmol·g-1)
CH4 evolution(23.5 μmol·g-1)
130
Cs2AgBiBr6@g-C3N4 (CABB@g-C3N4) In situ assembly strategy Thin shell(size 2~3 nm) CO2 reduction(2.0 μmol·g-1·h-1) 131
Zr based MOFs/carbon nanotubes(UIO-66-NH2/CNTs) Hydrothermal method spheres/rods(SSA:
642.5 m2·g-1)
CO2 reduction(28.8 μmol, 4 h) 132
4'-(PO3H2)2-bipy)]Br2-TiO2-CO2-reducing enzyme(RUP-TiO2-CODH) modified with a
photosensitizer
Nanospheres(size: 21 nm) CO evolution(5 μmol, 4 h) 133
MOF-525(Zr6O4(OH)4(TCPP-H2)3)-Co(MOF-525-Co) incorporation of
coordinatively unsaturated single atoms
Nanosheets CO evolution(200.6 μmol·g-1·h-1)
CH4 evolution(36.76 μmol·g-1·h-1)
134
MIL-101=Fe-containing MOFs (NH2-MIL-101) amine-functionalized Clusters CO2 adsorption(34.0 cm3·g-1) 135
Au@PtAg/2-Methylimidazole zinc salt(Au@PtAg@ZIF-8) encapsulation approach Core/hell(SSA:
1325 m2·g-1)
CO evolution(14.5 μmol·g-1·h-1) 136
[1]
Lewis N S, Nocera D G. Proc. Natl. Acad. Sci. USA, 2006, 103(43):15729.

doi: 10.1073/pnas.0603395103
[2]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11): 6503.

doi: 10.1021/cr1001645
[3]
Maeda K, Domen K. J. Phys. Chem. C, 2007, 111(22): 7851.

doi: 10.1021/jp070911w
[4]
Bard A J, Fox M A. Acc. Chem. Res., 1995, 28(3): 141.

doi: 10.1021/ar00051a007
[5]
Li X, Yu J G, Low J, Fang Y P, Xiao J, Chen X B. J. Mater. Chem. A, 2015, 3(6): 2485.

doi: 10.1039/C4TA04461D
[6]
Roy S C, Varghese O K, Paulose M, Grimes C A, ACS Nano, 2010, 4: 1259.

doi: 10.1021/nn9015423
[7]
Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39(11): 4206.

doi: 10.1039/b921692h
[8]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G
[9]
Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4(3): 1259.

doi: 10.1021/nn9015423
[10]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed, 2013, 52:7372.

doi: 10.1002/anie.201207199
[11]
Chen C C, Ma W H, Zhao J C, Chem. Soc. Rev., 2010, 39: 4206.

doi: 10.1039/b921692h
[12]
Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277(5698): 637.

doi: 10.1038/277637a0
[13]
Halmann M. Nature, 1978, 275(5676): 115.

doi: 10.1038/275115a0
[14]
Chen Y Z, Jiang D J, Gong Z Q, Li Q L, Shi R R, Yang Z X, Lei Z Y, Li J Y, Wang L N. J. Mater. Sci. Technol., 2020, 38: 93.

doi: 10.1016/j.jmst.2019.09.003
[15]
Zhu D D, Zhou Q X. Environ. Nanotechnol. Monit. Manag., 2019, 12: 100255.
[16]
Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A. Arab. J. Chem., 2020, 13(1): 3498.

doi: 10.1016/j.arabjc.2018.12.001
[17]
Rueda-Marquez J J, Levchuk I, Fernández Ibañez P, Sillanpää M. J. Clean. Prod., 2020, 258: 120694.
[18]
Osterloh F E. Chem. Soc. Rev., 2013, 42(6): 2294.

doi: 10.1039/c2cs35266d pmid: 23072874
[19]
Chen Y Z, Li W H, Li L, Wang L N. Rare Metals, 2017, 37(11): 1.

doi: 10.1007/s12598-017-0953-2
[20]
Kirner J T, Finke R G. J. Mater. Chem. A, 2017, 5(37): 19560.

doi: 10.1039/C7TA05709A
[21]
Zhang T, Lin W B. Chem. Soc. Rev., 2014, 43(16): 5982.

doi: 10.1039/c4cs00103f pmid: 24769551
[22]
Andreeva N A, Chaban V V. J. Chem. Thermodyn., 2018, 116: 1.

doi: 10.1016/j.jct.2017.08.019
[23]
Chen S, Jacobs D L, Xu J K, Li Y X, Wang C Y, Zang L. RSC Adv., 2014, 4(89): 48486.

doi: 10.1039/C4RA09258A
[24]
Niu J F, Yao B H, Yu X J, Peng C, Lu L L. J. Funct. Mater., 2013, 44(8): 1132.
(钮金芬, 姚秉华, 余晓皎, 彭超, 路蕾蕾. 功能材料, 2013, 44(8): 1132).
[25]
Singh C, Chaubey S, Singh P, Sharma K, Shambhavi, Kumar A, Yadav R K, Dwivedi D K, Baeg J O, Kumar U, Yadav B C, Pandey G. Diam. Relat. Mater., 2020, 101: 107648.
[26]
Cui X, Li Y H, Dong W Y, Liu D J, Duan Q. React. Funct. Polym., 2020, 154: 104633.
[27]
Dai Z C, Li D N, Chi L, Li Y W, Gao B, Qiu N N, Duan Q, Li Y H. Mater. Lett., 2019, 241: 239.

doi: 10.1016/j.matlet.2019.01.126
[28]
Kumar S, Yadav R K, Ram K, Aguiar A, Koh J, Sobral A J F N. J. CO2 Util., 2018, 27: 107.
[29]
Gonuguntla S, Tiwari A, Madanaboina S, Lingamallu G, Pal U. Int. J. Hydrog. Energy, 2020, 45(13): 7508.

doi: 10.1016/j.ijhydene.2019.04.268
[30]
Yu Y, Li Y W, Li Y H, Wang H G, Zuo Q H, Duan Q. React. Funct. Polym., 2019, 143: 104340.
[31]
Mahy J G, Paez C A, Carcel C, Bied C, Tatton A S, Damblon C, Heinrichs B, Wong Chi Man M, Lambert S D. J. Photochem. Photobiol. A: Chem., 2019, 373: 66.

doi: 10.1016/j.jphotochem.2019.01.001
[32]
Zhang X H, Lin L, Qu D, Yang J G, Weng Y X, Wang Z, Sun Z C, Chen Y, He T. Appl. Catal. B: Environ., 2020, 265: 118595.
[33]
Li Y W, Duan Q, Wang H G, Gao B, Qiu N N, Li Y H. J. Photochem. Photobiol. A: Chem., 2018, 356: 370.

doi: 10.1016/j.jphotochem.2018.01.016
[34]
Kharazi P, Rahimi R, Rabbani M. Mater. Res. Bull., 2018, 103: 133.

doi: 10.1016/j.materresbull.2018.03.031
[35]
Wei M, Wan J M, Hu Z W, Peng Z Q, Wang B, Wang H G. Appl. Surf. Sci., 2017, 391: 267.

doi: 10.1016/j.apsusc.2016.05.161
[36]
Naseri A, Samadi M, Pourjavadi A, Moshfegh A Z, Ramakrishna S. J. Mater. Chem. A, 2017, 5(45): 23406.

doi: 10.1039/C7TA05131J
[37]
Hatice K, Robert G, Chiara J B, Achilleos D S, Xin F, Durrant J R, Erwin R. ACS Catal., 2018, 8(8): 6914.

doi: 10.1021/acscatal.8b01969
[38]
Wang C, Xie Z G, de Krafft K E, Lin W B. J. Am. Chem. Soc., 2011, 133(34): 13445.

doi: 10.1021/ja203564w
[39]
Xiang Q J, Yu J G. J. Phys. Chem. Lett., 2013, 4(5): 753.

doi: 10.1021/jz302048d
[40]
Yu J, Bo W. Appl. Catal. B: Environ., 2010, 94:295.

doi: 10.1016/j.apcatb.2009.12.003
[41]
Yu J G, Dai G P, Cheng B. J. Phys. Chem. C, 2010, 114(45): 19378.

doi: 10.1021/jp106324x
[42]
Yu J, Wang G, Cheng B, Zhou M. Appl. Catal. B: Environ., 2007, 693-4: 171.
[43]
Yu J G, Wang Y, Xiao W. J. Mater. Chem. A, 2013, 1(36): 10727.

doi: 10.1039/c3ta12218b
[44]
Madhusudan P, Zhang J, Cheng B, Yu J G. Phys. Chem. Chem. Phys., 2015, 17(23): 15339.

doi: 10.1039/C5CP01598G
[45]
Marin M L, Santos-Juanes L, Arques A, Amat A M, Miranda M A. Chem. Rev., 2011, 112(3):1710.

doi: 10.1021/cr2000543
[46]
Sirringhaus H, Sakanoue T, Chang J F. Phys. Status Solidi B, 2012, 249(9): 1655.

doi: 10.1002/pssb.201248143
[47]
Rissner F, Natan A, Egger D A, Hofmann O T, Kronik L, Zojer E. Org. Electron., 2012, 13(12): 3165.

doi: 10.1016/j.orgel.2012.09.003
[48]
Klauk H. Wiley-VCH Verlag GmbH & Co. KGaA, E: 67.
[49]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38:253.

doi: 10.1039/B800489G
[50]
Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29:1601694.
[51]
Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Adv. Mater., 2008, 20(15): 2859.

doi: 10.1002/adma.v20:15
[52]
Zhang N, Wang L, Wang H M, Cao R H, Wang J F, Bai F, Fan H Y. Nano Lett., 2018, 18(1): 560.

doi: 10.1021/acs.nanolett.7b04701 pmid: 29277993
[53]
Xing Y T, Hu Z C, Tang H R, Huang F. Sci. Sin. Chimica, 2020, 50(8): 916(in Chinese).
(邢晔彤, 胡志诚, 唐浩然, 黄飞. 中国科学: 化学, 2020, 50(8): 916).
[54]
Wang J, Liu D, Zhu Y F, Zhou S Y, Guan S Y. Appl. Catal. B: Environ., 2018, 231: 251.

doi: 10.1016/j.apcatb.2018.03.026
[55]
Shang J T, Tang H Y, Ji H W, Ma W H, Chen C C, Zhao J C. Chin. J. Catal., 2017, 38(12): 2094.

doi: 10.1016/S1872-2067(17)62960-7
[56]
Han J, Deng Y N, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Colloid Interface Sci., 2021, 582: 1021.

doi: 10.1016/j.jcis.2020.09.013
[57]
Xiang Q J, Yu J G, Jaroniec M. Chem. Commun., 2011, 47:4532.

doi: 10.1039/c1cc10501a
[58]
Liu S W, Yu J G,. Jaroniec M. J. Am. Chem. Soc. 2010, 132: 11914.

doi: 10.1021/ja105283s
[59]
Forrest S R, Thompson M E. Chem. Rev., 2007, 107(4): 923.

doi: 10.1021/cr0501590
[60]
Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45(9): 2603.

doi: 10.1039/C5CS00838G
[61]
Kasai H, Kamatani H, Yoshikawa Y, Okada S, Oikawa H, Watanabe A, Itoh O, Nakanishi H. Chem. Lett., 1997, 26(11): 1181.

doi: 10.1246/cl.1997.1181
[62]
Auweter H, Haberkorn H, Heckmann W, Horn D, Lüddecke E, Rieger J, Weiss H. Angew. Chem. Int. Ed., 1999, 38(15): 2188.

doi: 10.1002/(ISSN)1521-3773
[63]
Oikawa H, Mitsui T, Onodera T, Kasai H, Nakanishi H, Sekiguchi T. Jpn. J. Appl. Phys., 2003, 42(Part 2, No. 2A): L111.
[64]
Zhong Y, Wang J F, Zhang R F, Wei W B, Wang H M, Lü X, Bai F, Wu H M, Haddad R, Fan H Y. Nano Lett., 2014, 14(12): 7175.

doi: 10.1021/nl503761y pmid: 25365754
[65]
Kang L T, Wang Z C, Cao Z W, Ma Y, Fu H B, Yao J N. J. Am. Chem. Soc., 2007, 129(23): 7305.

doi: 10.1021/ja068710d
[66]
Kakhki R M, Tayebee R, Hedayat S. Appl. Organomet. Chem., 2018, 32:e4033.
[67]
Yuan X J, Floresyona D, Aubert P H, Bui T T, Remita S, Ghosh S, Brisset F, Goubard F, Remita H. Appl. Catal. B: Environ., 2019, 242: 284.

doi: 10.1016/j.apcatb.2018.10.002
[68]
Wang Z C, Medforth C J, Shelnutt J A. J. Am. Chem. Soc., 2004, 126(49): 15954.

doi: 10.1021/ja045068j
[69]
Zhao Y S, Yang W S, Xiao D B, Sheng X H, Yang X, Shuai Z G, Luo Y, Yao J N. Chem. Mater., 2005, 17(25): 6430.

doi: 10.1021/cm051949t
[70]
Ajayaghosh A, George S J. J. Am. Chem. Soc., 2001, 123(21): 5148.

pmid: 11457366
[71]
Zhao Y S, Yang W S, Yao J N. Phys. Chem. Chem. Phys., 2006, 8(28): 3300.

doi: 10.1039/b604645m
[72]
Dai Z R, Pan Z W, Wang Z L. Adv. Funct. Mater., 2003, 13(1): 9.

doi: 10.1002/adfm.200390013
[73]
Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Chem. Eur. J., 2005, 11(12): 3773.

doi: 10.1002/(ISSN)1521-3765
[74]
Wang J, Shi W, Liu D, Zhang Z J, Zhu Y F, Wang D. Appl. Catal. B: Environ., 2017, 202: 289.

doi: 10.1016/j.apcatb.2016.09.037
[75]
Li Y, Zhang D N, Feng X H, Xiang Q J. Chin. J. Catal., 2020, 41(1):21.

doi: 10.1016/S1872-2067(19)63427-3
[76]
Chen H L, Dong S H, Bai M L, Cheng N Y, Wang H, Li M L, Du H W, Hu S X, Yang Y L, Yang T Y, Zhang F, Gu L, Meng S, Hou S M, Guo X F. Adv. Mater., 2015, 27(12): 2113.

doi: 10.1002/adma.v27.12
[77]
Rigas G P, Payne M M, Anthony J E, Horton P N, Castro F A, Shkunov M. Nat. Commun., 2016, 7(1): 1.
[78]
Diao Y, Tee B C K, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z N. Nat. Mater., 2013, 12(7): 665.

doi: 10.1038/nmat3650
[79]
Nguyen N N, Jo S B, Lee S K, Sin D H, Kang B, Kim H H, Lee H, Cho K. Nano Lett., 2015, 15(4): 2474.

doi: 10.1021/nl504958e pmid: 25798655
[80]
Seidel C, Awater C, Liu X D, Ellerbrake R, Fuchs H. Surf. Sci., 1997, 371(1): 123.

doi: 10.1016/S0039-6028(96)00981-8
[81]
Kwon S, Kim J, Kim G, Yu K, Jo Y R, Kim B J, Kim J, Kang H, Park B, Lee K. Adv. Mater., 2015, 27(43): 6870.

doi: 10.1002/adma.201502980
[82]
Park K S, Baek J, Park Y, Lee L, Hyon J, Koo Lee Y E, Shrestha N K, Kang Y, Sung M M. Adv. Mater., 2017, 29(6): 1603285.
[83]
Wu J K, Li Q F, Xue G B, Chen H Z, Li H Y. Adv. Mater., 2017, 29(14): 1606101.
[84]
Patnaik S, Martha S, Parida K M. RSC Adv., 2016, 6(52): 46929.

doi: 10.1039/C5RA26702A
[85]
Niu P, Zhang L L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22(22): 4763.

doi: 10.1002/adfm.v22.22
[86]
Qiu P X, Chen H, Xu C M, Zhou N, Jiang F, Wang X, Fu Y S. J. Mater. Chem. A, 2015, 3(48): 24237.

doi: 10.1039/C5TA08406G
[87]
She X J, Xu H, Xu Y G, Yan J, Xia J X, Xu L, Song Y H, Jiang Y, Zhang Q, Li H M. J. Mater. Chem. A, 2014, 2(8): 2563.

doi: 10.1039/c3ta13768f
[88]
Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1(46): 14766.

doi: 10.1039/c3ta13188b
[89]
Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. J. Mater. Chem. A, 2014, 2(44): 18924.

doi: 10.1039/C4TA04487H
[90]
Xu H, Yan J, She X J, Xu L, Xia J X, Xu Y G, Song Y H, Huang L Y, Li H M. Nanoscale, 2014, 6(3): 1406.

doi: 10.1039/C3NR04759H
[91]
Zhao Z W, Sun Y J, Luo Q, Dong F, Li H, Ho W K. Sci. Rep., 2015, 5(1): 1.
[92]
Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1(46): 14766.

doi: 10.1039/c3ta13188b
[93]
Chen X F, Zhang J S, Fu X Z, Markus A, Wang X C. J. Am. Chem. Soc., E, 131(33):11658.

doi: 10.1021/ja903923s
[94]
Li X WE X, Di J X, Zhu W S, Li H M. Acta Phys. -Chim. Sin., 2020, 36(3):1902001.
[95]
He T, Ni B, Zhang S M, Gong Y, Wang H Q, Gu L, Zhuang J, Hu W P, Wang X. Small, 2018, 14(16): 1703929.
[96]
Xiao Y W, Guo W X, Chen H H, Li H F, Xu X J, Wu P, Shen Y, Zheng B, Huo F W, Wei W D. Mater. Chem. Front., 2019, 3(8): 1580.

doi: 10.1039/C9QM00201D
[97]
Zhou H L, Qu Y Q, Zeid T, Duan X F. Energy Environ. Sci., 2012, 5(5): 6732.

doi: 10.1039/c2ee03447f
[98]
Chen Y Z, Zhang C Y, Zhang X J, Ou X M, Zhang X H. Chem. Commun., 2013, 49(80): 9200.

doi: 10.1039/c3cc45169k
[99]
Mendori D, Hiroya T, Ueda M, Sanyoushi M, Nagai K, Abe T. Appl. Catal. B: Environ., 2017, 205: 514.

doi: 10.1016/j.apcatb.2016.12.071
[100]
Chen Q Y, Li S J, Xu H Y, Wang G F, Qu Y, Zhu P F, Wang D S. Chin. J. Catal., 2020, 41(3): 514.

doi: 10.1016/S1872-2067(19)63497-2
[101]
Wang Z, Murugananthan M, Zhang Y R. Appl. Catal. B: Environ., 2019, 248: 349.

doi: 10.1016/j.apcatb.2019.02.041
[102]
Xiong Z W, Wang Z, Muthu M, Zhang Y R. J. Hazard. Mater., 2019, 373: 565.

doi: 10.1016/j.jhazmat.2019.03.114
[103]
Rivelino R, Mota F D B. Nano Lett., 2007, 7:1526.

pmid: 17508768
Li Q, Xu L, Luo K W, Huang W Q, Wang, L L, Li X F, Huang G F, Yu Y B. Phys. Chem. Chem. Phys, 2016, 18(48):33094-33102.

doi: 10.1039/C6CP07046A
[104]
Deng J Y, Zhu S L, Zheng J F, Nie L H. J. Colloid Interface Sci., 2020, 569: 320.

doi: 10.1016/j.jcis.2020.02.100
[105]
Bera R, Mandal S, Mondal B, Jana B, Nayak S K, Patra A. ACS Sustainable Chem. Eng., 2016, 4(3): 1562.

doi: 10.1021/acssuschemeng.5b01504
[106]
Low J X, Cao S W, Yu J G, Wageh S. Chem. Commun., 2014, 50(74): 10768-10777.

doi: 10.1039/C4CC02553A
[107]
Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R. Nano Energy, 2015, 13: 757.

doi: 10.1016/j.nanoen.2015.03.014
[108]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400
[109]
Jiang J Z, Zou J, Wee A T S, Zhang W J. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[110]
Khan M E, Han T H, Khan M M, Karim M R, Cho M H. ACS Appl. Nano Mater., 2018, 1(6): 2912.

doi: 10.1021/acsanm.8b00548
[111]
Tong T, Zhu B C, Jiang C J, Cheng B, Yu J G. Appl. Surf. Sci., 2018, 433: 1175.

doi: 10.1016/j.apsusc.2017.10.120
[112]
Wang L, Zhu C L, Yin L S, Huang W. Acta. Phys. Chim. Sin., 2020, 36(7): 1907001.
[113]
Liang Q, Zhang C J, Xu S, Zhou M, Zhou Y T, Li Z Y. J. Colloid Interface Sci., 2020, 577: 1.

doi: 10.1016/j.jcis.2020.05.053
[114]
Zhang P, Wang Y B, Zhou Y, Zhang H, Wei X H, Sun W H, Meng S J, Han L J. Mol. Catal., 2019, 465: 24.

doi: 10.1016/j.mcat.2018.12.023
[115]
Min K S, Kumar R S, Lee J H, Kim K S, Lee S G, Son Y A. Dyes Pigments, 2019, 160: 37.

doi: 10.1016/j.dyepig.2018.07.045
[116]
Xu B Y, An Y, Liu Y Y, Huang B B, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Chem. Commun., 2016, 52(92): 13507.

doi: 10.1039/C6CC07849D
[117]
Xu B Y, An Y, Liu Y Y, Qin X Y, Zhang X Y, Dai Y, Wang Z Y, Wang P, Whangbo M H, Huang B B. J. Mater. Chem. A, 2017, 5(27): 14406.

doi: 10.1039/C7TA03970K
[118]
Li J Y, Jiang X, Lin L, Zhou J J, Xu G S, Yuan Y P. J. Mol. Catal. A: Chem., 2015, 406: 46.

doi: 10.1016/j.molcata.2015.05.014
[119]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.
[120]
Yang J, Miao H, Li W L, Li H Q, Zhu Y F. J. Mater. Chem. A, 2019, 7(11): 6482.

doi: 10.1039/c9ta00580c
[121]
Monga D, Ilager D, Shetti N P, Basu S M, Aminabhavi T M. J. Environ. Manag., 2020, 274: 111208.
[122]
Sun Y W, Qi X, Li R Q, Xie Y T, Tang Q, Ren B X. Opt. Mater., 2020, 108: 110170.
[123]
Azzam E M S, Fathy N A, El-Khouly S M, Sami R M. J. Water Process. Eng., 2019, 28: 311.

doi: 10.1016/j.jwpe.2019.02.016
[124]
Song L M, Guo C P, Li T T, Zhang S J. Ceram. Int., 2017, 43(10): 7901.

doi: 10.1016/j.ceramint.2017.03.115
[125]
Putri L K, Ng B J, Ong W J, Lee H W, Chang W S, Mohamed A R, Chai S P. Appl. Catal. B: Environ., 2020, 265: 118592.
[126]
Akbarzadeh E, Soheili H Z, Hosseinifard M, Gholami M R. Mater. Res. Bull., 2020, 121: 110621.
[127]
Zheng X K, Yuan J J, Shen J, Liang J X, Che J F, Tang B, He G Y, Chen H Q. J. Mater. Sci.: Mater. Electron., 2019, 30(6): 5986.
[128]
Guan X M, Lin S J, Lan J W, Shang J J, Li W X, Zhan Y F, Xiao H Y, Song Q S. Cellulose, 2019, 26: 7437.

doi: 10.1007/s10570-019-02621-8
[129]
Zhao X X, Guan J R, Li J Z, Li X, Wang H Q, Huo P W, Yan Y S. Appl. Surf. Sci., 2021, 537: 147891.
[130]
Wang M T, Wang D K, Li Z H. Appl. Catal. B: Environ., 2016, 183:47.

doi: 10.1016/j.apcatb.2015.10.037
[131]
Wang Y Y, Huang H L, Zhang Z Z, Wang C, Yang Y Y, Li Q, Xu D S. Appl. Catal. B: Environ., 2021, 282: 119570.
[132]
Wang X J, Yang G R, Chai G D, Nasir M S, Wang S L, Zheng X, Wang C Y, Yan W. Int. J. Hydrog. Energy, 2020, 45(55): 30634.

doi: 10.1016/j.ijhydene.2020.08.273
[133]
Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132(7): 2132.

doi: 10.1021/ja910091z pmid: 20121138
[134]
Zhang H B, Wei J, Dong J C, Liu G G, Shi L, An P F, Zhao G X, Kong J T, Wang X J, Meng X G, Zhang J, Ye J H. Angew. Chem. Int. Ed., 2016, 55(46): 14310.

doi: 10.1002/anie.v55.46
[135]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.

doi: 10.1021/cs501169t
[136]
Su Y Q, Xu H T, Wang J J, Luo X K, Xu Z L, Wang K F, Wang W Z. Nano Res., 2019, 12(3): 625.

doi: 10.1007/s12274-018-2269-4
[137]
Huang H B. Environ. Eng. Sci., 2010, 27(8): 651.

doi: 10.1089/ees.2009.0392
[138]
Zhao Y M, Dong Y Z, Lu F T, Ju C G, Liu L, Zhang J, Zhang B, Feng Y Q. J. Mater. Chem. A, 2017, 5(29): 15380.

doi: 10.1039/C7TA03840B
[139]
Meng A N, Chaihu L X, Chen H H, Gu Z Y. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
[140]
Shen R C, Ding Y N, Li S B, Zhang P, Xiang Q J, Ng Y H, Li X. Chin. J. Catal., 2021, 42(1): 25.

doi: 10.1016/S1872-2067(20)63600-2
[141]
Oliva J, Gomez-Solis C, Diaz-Torres L A, Martinez-Luevanos A, Martinez A I, Coutino-Gonzalez E. J. Phys. Chem. C, 2018, 122(3): 1477.

doi: 10.1021/acs.jpcc.7b10375
[142]
Chung K H, Jeong S, Kim B J, Kim J S, Park Y K, Jung S C. Int. J. Hydrog. Energy, 2018, 43(11): 5873.

doi: 10.1016/j.ijhydene.2017.09.065
[143]
Xu J X, Qi Y H, Wang C, Wang L. Appl. Catal. B: Environ., 2019, 241: 178.

doi: 10.1016/j.apcatb.2018.09.035
[144]
Ren Y J, Zeng D Q, Ong W J. Chin. J. Catal., 2019, 40(3): 289.

doi: 10.1016/S1872-2067(19)63293-6
[145]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030
[146]
Kougias P G, Angelidaki I. Front. Environ. Sci. Eng., 2018, 12(3): 1.
[147]
Li X, Yu J G, Wageh S, Al-Ghamdi A A, Xie J. Small, 2016, 12(48): 6640.

doi: 10.1002/smll.v12.48
[148]
Li X, Wen J Q, Low J X, Fang Y P, Yu J G. Sci. China Mater., 2014, 55:3164.
[149]
Cao S W, Liu X F, Yuan Y P, Zhang Z Y, Liao Y S, Fang J, Loo S C J, Sum T C, Xue C. Appl. Catal. B: Environ., 2014, 147: 940.

doi: 10.1016/j.apcatb.2013.10.029
[150]
Liang M F, Borjigin T, Zhang Y H, Liu H, Liu B H, Guo H. ACS Appl. Mater. Interfaces, 2018, 10(40): 34123.

doi: 10.1021/acsami.8b09455
[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[5] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[6] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[7] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[8] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[9] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[12] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[13] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[14] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[15] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.