中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1658-1663 DOI: 10.7536/PC160701 Previous Articles   Next Articles

• Review and comments •

A Bridge Spanning Microscopic to Macroscopic Assembly: Application of the Technique of Polymerization of Concentrated Emulsion

Feng Yanyan, Jin Ming, Wan Decheng*   

  1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51273149, 51573138).
PDF ( 338 ) Cited
Export

EndNote

Ris

BibTeX

Open-cellular materials can be obtained by polymerization of concentrated emulsion (high internal phase emulsion:HIPE) (polyHIPE), by which nano-objects can be assembled at macroscopic scale, resulting in ordered surface, and the material is producible in large scale. However, earlier polyHIPE technique just provides a porous framework because the small surfactants can just serve as stabilizers but cannot serve as a surface modifier. Postmodification of such polyHIPE usually appears to be tedious, arising from the inert matrix and the nature of a heterogeneous reaction. Recently, certain breakthrough in surface functionalization of polyHIPE occurs:(1) pickering stabilizing particles are tailored with surface chemistry; (2) amphiphilic block copolymers are used in place of the readily leachable small surfactant for direct preparation of surface-functionalized polyHIPE; (3) dendritic amphiphile based on hyperbranched polymers are used to one-pot prepare polyHIPE with active-groups dictated surface; (4)metal nanoparticle-dendritic amphiphile nanocomposites are used as stabilizer to prepare polyHIPE with metal nanoparticle-dictated surface. The polyHIPEs are of large size, ready separation and good recycling, high specific surface area, structured surface, thus are highly potential in supramolecular water treatment, low-leaching catalyst, etc.

Contents
1 Introduction
2 Direct surface functionalization of polyHIPE
3 Direct preparation of metal nanoparticle-decorated polyHIPE
4 Conclusion

CLC Number: 

[1] Cameron N R. Polymer, 2005, 46:1439.
[2] Cameron N R, Sherrington D C, Albiston L, Gregory D P. Colloid Polym. Sci., 1996, 274:592.
[3] Menner A, Bismarck A. Macromol. Symp., 2006, 242:19.
[4] Zhang H F, Cooper A I. Soft Matter, 2005, 1:107.
[5] Silverstein M S. Prog. Polym. Sci., 2014, 39:199.
[6] Wu D, Xu F, Sun B, Fu R, He H. Matyjaszewski K. Chem. Rev., 2012, 112:3959.
[7] Brun N, Ungureanu S, Deleuze H, Backov R. Chem. Soc. Rev., 2011, 40:771.
[8] Gokmen M T, Du Prez F E. Prog. Polym. Sci., 2012, 37:365.
[9] Kimmins S D, Cameron N R. Adv. Funct. Mater., 2011, 21, 211.
[10] 刘华蓉(Liu H R), 胡欣(Hu X),杨松(Yang S),苗伟峰(Miao W F),李梓超(Li Z C),张伟(Zhang W).化学进展(Progress in Chemistry), 2009, 21(4):672.
[11] Pieranski P. Phys. Rev. Lett., 1980, 45:569.
[12] Sevsek U, Krajnc P. React. Funct. Polym., 2012, 72:221.
[13] Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M. React. Funct. Polym., 2009, 69:724.
[14] Yang S, Zeng L, Wang Y P, Sun X H, Sun P J, Liu H M, Nie C, Liu H R. Colloid. Polym. Sci., 2014, 292(10):2563.
[15] Krajnc P, Brown J F, Cameron N R. Organic Lett., 2002, 4(15):2497.
[16] Mai N A, Phuoc D N, Cam Q M, Sparrman T, Irgum K. J. Sep. Sci., 2009, 32:2608.
[17] Binks B P. Current Opinion. Colloid Interface Sci., 2002, 7:21.
[18] Zhang S, Chen J. Chem. Commun., 2009, 2217.
[19] Colver P J, Bon S A. Chem. Mater., 2007, 19, 1537.
[20] Gurevitch I, Silverstein M S. J. Polym. Sci. Part A:Poly. Chem., 2010, 48:1516.
[21] Gurevitch I, Silverstein M S. Macromolecules, 2011, 44:3398.
[22] Gurevitch I, Silverstein M S. Macromolecules, 2012, 45:6450.
[23] Ikem V O, Menner A, Horozov T S, Bismarck A. Adv. Mater., 2010, 22:3588.
[24] Luo Y W, Wang A N, Gao X. Colloid Polym. Sci., 2015, 293:1767.
[25] Viswanathan P, Johnson D W, Hurley C, Cameron N R, Battaglia G. Macromolecules, 2014, 47:7091.
[26] Zhou Y F, Huang W, Liu J Y, Zhu X Y, Yan D Y. Adv. Mater., 2010, 22:4567.
[27] Hu, X Z, Zhou L, Gao C. Colloid. Polym. Sci., 2011, 289(12):1299.
[28] Ye Y L, Wan D C, Du J, Jin M, Pu H T. J. Mater. Chem. A, 2015, 3:6297.
[29] Hu R X, Wan D C, Jin M. RSC Adv., 2016, 6:55682.
[30] Ye Y L, Jin M, Wan D C. J. Mater. Chem. A, 2015, 3:13519.
[31] Liu H H, Wan D C, Du J, Jin M. ACS Appl. Mater. Interface, 2015, 7:20885.
[32] Cameron N R,Sherrington D C. J. Mater. Chem., 1997, 7:2209.
[33] Manmen M, Choi S K, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37:2754.
[34] Li R Y, Zhang L B, Wang P. Nanoscale, 2015, 7:17167.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[9] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[10] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[11] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[12] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[13] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[14] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.