中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1263-1274 DOI: 10.7536/PC211231 Previous Articles   Next Articles

• Review •

Preparation of Furoic Acid by Oxidation of Furfural

Xinglong Li, Yao Fu()   

  1. School of Chemistry and Materials Science, University of Science and Technology of China,Hefei 230026, China
  • Received: Revised: Online: Published:
  • Contact: Yao Fu
  • Supported by:
    Major Science and Technology Projects of Anhui Province(18030701157); Anhui Natural Science Foundation Project(2008085QB63)
Richhtml ( 45 ) PDF ( 900 ) Cited
Export

EndNote

Ris

BibTeX

As an important downstream product of furfural, furoic acid has important applications in food manufacturing, material preparation, optical technology and drug synthesis. It can be used to synthesize preservatives, plasticizers, thermosetting resins, spices and a variety of drugs. At present, there are many reviews on the preparation of furfural and the preparation of downstream compounds by hydrogenation. However, there is no systematic review on the oxidation of furfural to furoic acid. This paper reviews the progress in preparation of furoic acid from furfural in recent years. The effects of different catalytic systems and different oxygen sources on the selectivity of furoic acid are discussed. The application prospect of heterogeneous catalysts in the preparation of furoic acid is highlighted, and the future development direction of furoic acid preparation is prospected.

Contents

1 Introduction

2 Catalytic oxidation system

2.1 Homogeneous oxidation system

2.2 Heterogeneous oxidation system

2.3 Biological oxidation system

3 Conclusion and outlook

Fig. 1 Number of publications on furfural (left) and furoic acid (right) annually in recent years. Source:Web of Science (keyword: furfural)
Fig. 2 Several important downstream compounds prepared by furfural
Fig. 3 Conversion of furoic acid to downstream products
Table 1 Summary of catalytic conversion of furfural to furoic acid by homogeneous catalytic system
Fig. 4 Oxidation of aldehyde to acid by [Cu(acac)2]/SIMes catalysts[13]
Fig. 5 Oxidation of aldehyde to acid by Triazolium NHC catalyst[15]
Fig. 6 Oxidation of aldehyde to acid by iridium complex catalysts[16]
Fig. 7 Oxidation of aldehyde to acid by NHC catalysts[17]
Fig. 8 Oxidation of aldehyde to acid by CuCl and t-BuOOH oxidation system[18]
Fig. 9 Oxidation of aldehydes to carboxylic acids by CuBr2 and t-BuOOH catalytic system[19]
Fig. 10 Oxidation of aldehydes to carboxylic acids by Mohr’s salt and t-BuOOH catalytic system[21]
Fig. 11 Oxidation of alcohols or aldehydes to carboxylic acids by I2 and t-BuOOH catalytic system[22]
Fig. 12 Oxidation of aldehydes to carboxylic acids by PCC under solvent-free conditions[23]
Fig. 13 Oxidation of aldehyde to acid and ester using Ni catalysts[25]
Fig. 14 Catalytic conversion of aldehyde to acid using carbon dioxide mediated NHC catalyst and its reaction mechanism[26]
Fig. 15 Catalytic conversion of aldehyde to acid using Hexamethyl-benzene-supported ruthenium complexes[27]
Table 2 Summary of catalytic conversion of furfural to furoic acid by heterogeneous catalytic system
Fig. 16 Conversion of furfural to furoic acid by using Co4HP2Mo15V3O62/H2O2 catalytic system[31]
Fig. 17 Conversion of aldehydes to acids catalyzed by iron (Ⅱ) phthalocyanine and heterogeneous triazolium catalytic system[38]
Fig. 18 Conversion of furfuryl alcohol or furfural to furoic acid by using MnO2 as catalysts[39]
Fig. 19 Conversion of furfuryl alcohol to furoic acid by using MOF-TEMPO as catalysts[44]
Fig. 20 Oxidation of aldehydes by ALDHs using NOX for coenzyme recycling[48]
Fig. 21 A dual-enzyme cascade system of GOase and ADHs for catalytic oxidation of aldehydes to carboxylic acids[50]
[1]
Martinez J G. Angew. Chem., Int. Ed., 2021, 60: 4956.

doi: 10.1002/anie.202014779
[2]
Bender T A, Dabrowski J A, GagnÉ M R. Nat. Rev. Chem., 2018, 2(5): 35.

doi: 10.1038/s41570-018-0005-y
[3]
Sajid M, Farooq U, Bary G, Azim M M, Zhao X B. Green Chem., 2021, 23(23): 9198.

doi: 10.1039/D1GC02919C
[4]
Döbereiner J W. Ann. Pharm., 1832, 3(2): 141.

doi: 10.1002/jlac.18320030206
[5]
Shen G F, Andrioletti B, Queneau Y. Curr. Opin. Green Sustain. Chem., 2020, 26: 100384.
[6]
Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, LÓpez Granados M. Energy Environ. Sci., 2016, 9(4): 1144.

doi: 10.1039/C5EE02666K
[7]
Li X D, Jia P, Wang T F. ACS Catal., 2016, 6(11): 7621.

doi: 10.1021/acscatal.6b01838
[8]
Lange J P, van der Heide E, Van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.

doi: 10.1002/cssc.201100648
[9]
Douthwaite M, Huang X Y, Iqbal S, Miedziak P J, Brett G L, Kondrat S A, Edwards J K, Sankar M, Knight D W, Bethell D, Hutchings G J. Catal. Sci. Technol., 2017, 7(22): 5284.

doi: 10.1039/C7CY01025G
[10]
Drault F, Snoussi Y, Paul S, Itabaiana I, Wojcieszak R. ChemSusChem, 2020, 13(19): 5164.

doi: 10.1002/cssc.202001393
[11]
Uma B, Das S J, Krishnan S, Boaz B M. Phys. B Condens. Matter, 2011, 406(14): 2834.

doi: 10.1016/j.physb.2011.04.038
[12]
ChacÓn-Huete F, Messina C, Chen F, Cuccia L, Ottenwaelder X, Forgione P. Green Chem., 2018, 20(23): 5261.

doi: 10.1039/C8GC02481B
[13]
Liu M X, Li C J. Angew. Chem. Int. Ed., 2016, 55, 10806.

doi: 10.1002/anie.201604847
[14]
Enders D, Niemeier O, Henseler A. Chem. Rev., 2007, 107(12): 5606.

doi: 10.1021/cr068372z
[15]
Khatana A K, Singh V, Gupta M K, Tiwari B. Synthesis, 2018. 4290.
[16]
Yang Z H, Luo R S, Zhu Z P, Yang X R, Tang W P. Organometallics, 2017, 36(21): 4095.

doi: 10.1021/acs.organomet.7b00634
[17]
Zhao J F, Mück-Lichtenfeld C, Studer A. Adv. Synth. Catal., 2013, 355(6): 1098.

doi: 10.1002/adsc.201300034
[18]
Sreedevi M, Sekar G. Tetrahedron Lett., 2008, 49: 1083.

doi: 10.1016/j.tetlet.2007.11.198
[19]
Das R, Chakraborty D. Appl. Organometal. Chem., 2011, 25(6): 437.

doi: 10.1002/aoc.1783
[20]
Malik P, Chakraborty D. Tetrahedron Lett., 2010, 51(27): 3521.
[21]
Chakraborty D, Majumder C, Malik P. Appl. Organometal. Chem., 2011, 25(7): 487.

doi: 10.1002/aoc.1787
[22]
Hazra S, Deb M, Elias A J. Green Chem., 2017, 19(23): 5548.

doi: 10.1039/C7GC02802D
[23]
Salehi P, Firouzabadi H, Farrokhi A, Gholizadeh M. Synthesis, 2001, 2001(15): 2273.

doi: 10.1055/s-2001-18443
[24]
Babu B R, Balasubramaniam K K. Org. Prep. Proced. Int., 1994, 26(1): 123.

doi: 10.1080/00304949409458021
[25]
Esfandiari H, Jameh-bozorghi S, Esmaielzadeh S, Shafiee M R M, Ghashang M. Res. Chem. Intermed., 2013, 39(7): 3319.

doi: 10.1007/s11164-012-0844-y
[26]
Nair V, Varghese V, Paul R R, Jose A, Sinu C R, Menon R S. Org. Lett., 2010, 12(11): 2653.

doi: 10.1021/ol1008697
[27]
Phearman A S, Moore J M, Bhagwandin D D, Goldberg J M, Heinekey D M, Goldberg K I. Green Chem., 2021, 23(4): 1609.

doi: 10.1039/D0GC03809A
[28]
Papanikolaou G, Lanzafame P, Perathoner S, Centi G, Cozza D, Giorgianni G, Migliori M, Giordano G. Catal. Commun., 2021, 149: 106234.

doi: 10.1016/j.catcom.2020.106234
[29]
Zhou B W, Song J L, Zhang Z R, Jiang Z W, Zhang P, Han B X. Green Chem., 2017, 19(4): 1075.

doi: 10.1039/C6GC03022J
[30]
Ferraz C P, Navarro-JaÉn S, Rossi L M, Dumeignil F, Ghazzal M N, Wojcieszak R. Green Chem., 2021, 23(21): 8453.

doi: 10.1039/D1GC02889H
[31]
Hu Y L, Li D J, Li D S. RSC Adv., 2015, 5(32): 24936.

doi: 10.1039/C5RA02234G
[32]
Liu X, Luo Y, Ma H, Zhang S J, Che P H, Zhang M Y, Gao J, Xu J. Angew. Chem. Int. Ed., 2021, 60(33): 18103.

doi: 10.1002/anie.202103604
[33]
Sodhi R K, Paul S, Clark J H. Green Chem., 2012, 14(6): 1649.

doi: 10.1039/c2gc35289c
[34]
Yu H, Ru S, Zhai Y Y, Dai G Y, Han S, Wei Y G. ChemCatChem, 2018, 10(6): 1253.

doi: 10.1002/cctc.201701599
[35]
Tian Q Y, Shi D X, Sha Y W. Molecules, 2008, 13(4): 948.

doi: 10.3390/molecules13040948
[36]
Zhang C M, Xu X L. Ind. Catal., 2010, 18(11): 69.
( 张成明, 徐贤伦. 工业催化, 2010, 18(11): 69.)
[37]
Yu H, Ru S, Dai G Y, Zhai Y Y, Lin H L, Han S, Wei Y G. Angew. Chem. Int. Ed., 2017, 56(14): 3867.

doi: 10.1002/anie.201612225 pmid: 28252238
[38]
Brandolese A, Ragno D, di Carmine G, Bernardi T, Bortolini O, Giovannini P P, Pandoli O G, Altomare A, Massi A. Org. Biomol. Chem., 2018, 16(46): 8955.

doi: 10.1039/c8ob02425a pmid: 30403257
[39]
Hayashi E, Komanoya T, Kamata K, Hara M. ChemSusChem, 2017, 10(4): 654.

doi: 10.1002/cssc.201601443 pmid: 27925403
[40]
Lim M, Yoon C M, An G, Rhee H. Tetrahedron Lett., 2007, 48(22): 3835.
[41]
Gowda R R, Chakraborty D. Chin. J. Chem., 2011, 29(11): 2379.

doi: 10.1002/cjoc.201180406
[42]
Shen J R, Lei Z L, Lu J J, Ding Z G. Chem. Res. Appl., 1998, 10(5): 543.
( 沈静茹, 雷灼霖, 陆俭洁, 丁志刚. 化学研究与应用, 1998, 10(5): 543.)
[43]
Talukdar D, Sharma K, Bharadwaj S K, Thakur A. Synlett., 2013, 24: 963.

doi: 10.1055/s-0032-1316914
[44]
Kim S, Lee H E, Suh J M, Lim M H, Kim M. Inorg. Chem., 2020, 59(23): 17573.

doi: 10.1021/acs.inorgchem.0c02809
[45]
Zhang X Y, Zong M H, Li N. Green Chem., 2017, 19(19): 4544.

doi: 10.1039/C7GC01751K
[46]
Perez H I, Manjarrez N, Solis A, Luna H, Ramirez M A, Cassani J. Afr. J. Biotechnol., 2009, 8, 2279.
[47]
Krystof M, PÉrez-Sánchez M, de María P D. ChemSusChem, 2013, 6, 826.

doi: 10.1002/cssc.201200954 pmid: 23576295
[48]
Knaus T, Tseliou V, Humphreys L D, Scrutton N S, Mutti F G. Green Chem., 2018, 20(17): 3931.

doi: 10.1039/C8GC01381K
[49]
Shi S S, Zhang X Y, Zong M H, Wang C F, Li N. Mol. Catal., 2019, 469: 68.
[50]
Jia H Y, Zong M H, Zheng G W, Li N. ChemSusChem, 2019, 12(21): 4764.

doi: 10.1002/cssc.201902199
[51]
Zhang X Y, Wang X, Li N W, Guo Z W, Zong M H, Li N. ChemCatChem, 2020, 12(12): 3257.

doi: 10.1002/cctc.202000259
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[3] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[4] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[5] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[6] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[10] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[11] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[12] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[13] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[14] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[15] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.