中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1017-1025 DOI: 10.7536/PC210918 Previous Articles   Next Articles

• Review •

Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water

Shiyu Li1,2,3, Yongguang Yin1,2,3, Jianbo Shi1,2,3(), Guibin Jiang1,2,3   

  1. 1. School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310000, China
    2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    3. College of Resources and Environment, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Jianbo Shi
  • Supported by:
    National Key Research and Development Program of China(2020YFA0907400); National Natural Science Foundation of China(42025704); CAS Interdisciplinary Innovation Team(JCTD-2018-04)
Richhtml ( 43 ) PDF ( 616 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of modern industry, large amounts of mercury-containing compounds are discharged into the aqueous environment through various ways. Developing advanced technology for divalent mercury ion (Hg2+) removal from water is critical to reduce health risks and ensure ecological safety. As one of the effective water treatment technologies, the adsorptive removal of Hg2+ from aqueous solution has been concerned, and the key to make a breakthrough is to design adsorption materials with excellent performance. In recent years, covalent organic frameworks (COFs) have been widely used in the environmental remediation because of their high specific surface area, ordered porous structure and facile surface functionalization. Herein, the latest applications of COFs in adsorptive removal of Hg2+ from water are reviewed. The structure design, functionalized synthesis, Hg2+ adsorption behavior, reaction mechanism, affecting factors and potential to expand to large-scale applications of COFs are also discussed. Eventually, the future opportunities and development directions for COFs in Hg2+ removal are prospected.

Contents

1 Introduction

2 The structure and topology design of COFs

3 Functionalized synthesis of COFs

3.1 Bottom-up method

3.2 Post-synthesis modification

3.3 Physical blending method

4 Adsorption of Hg2+ from aqueous solution by COFs

4.1 Adsorption isotherm

4.2 Adsorption kinetics

4.3 Mechanism of interaction between COFs and Hg2+

4.4 Influence of coexisting metal ions and pH value

4.5 Fluorescence characteristics of COFs during adsorption

5 Conclusions and perspectives

Fig. 1 Topological structure of 2D and 3D COFs materials[37]. Copyright 2017, AAAS
Fig. 2 Functionalized synthesis methods for COFs materials[69⇓⇓⇓~73]
Table 1 Removal technologies of Hg2+ from aqueous media
Table 2 COFs materials for adsorptive removing Hg2+ in water
Table 3 The influencing factors and regeneration methods of COFs on Hg2+ adsorption process
Table 4 COFs materials for fluorescent detection and removal of Hg2+ in water
[1]
Fu F L, Wang Q. J. Environ. Manage., 2011, 92(3): 407.

doi: 10.1016/j.jenvman.2010.11.011
[2]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290.

doi: 10.1021/acs.est.6b01897
[3]
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. J. Environ. Chem. Eng., 2017, 5(3): 2782.

doi: 10.1016/j.jece.2017.05.029
[4]
Gworek B, Dmuchowski W, Baczewska-Dᶏbrowska A H. Environ. Sci. Eur., 2020, 32: 128.

doi: 10.1186/s12302-020-00401-x
[5]
Balogh S J, Tsui M T, Blum J D, Matsuyama A, Woerndle G E, Yano S, Tada A. Environ. Sci. Technol., 2015, 49(9): 5399.

doi: 10.1021/acs.est.5b00631
[6]
Wang L W, Hou D Y, Cao Y N, Ok Y S, Tack F M G, Rinklebe J, O'connor D. Environ. Int., 2020, 134: 105281.

doi: 10.1016/j.envint.2019.105281
[7]
Selin H, Keane S E, Wang S X, Selin N E, Davis K, Bally D. Ambio., 2018, 47(2): 198.

doi: 10.1007/s13280-017-1003-x
[8]
He J, Reddy G K, Thiel S W, Smirniotis P G, Pinto N G. Energ. Fuel., 2013, 27(8): 4832.

doi: 10.1021/ef400718n
[9]
Ancora M P, Zhang L, Wang S X, Schreifels J J, Hao J M. Energy Policy., 2016, 88: 485.

doi: 10.1016/j.enpol.2015.10.048
[10]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.

doi: 10.1021/es305071v pmid: 23590191
[11]
UNEP, Global Mercury Assessment 2018, Geneva, Switzerland, 2019.
[12]
Liu M D, Du P, Yu C H, He Y P, Zhang H R, Sun X J, Lin H M, Luo Y, Xie H, Guo J M, Tong Y D, Zhang Q G, Chen L, Zhang W, Li X Q, Wang X J. Environ. Sci. Technol., 2018, 52(1): 124.

doi: 10.1021/acs.est.7b05217
[13]
Streets D G, Horowitz H M, Lu Z F, Levin L, Thackray C P, Sunderland E M. Atmos. Environ., 2019, 201: 417.

doi: 10.1016/j.atmosenv.2018.12.031
[14]
Ni Chadhain S M, Schaefer J K, Crane S, Zylstra G J, Barkay T. Environ. Microbiol., 2006, 8(10): 1746.

pmid: 16958755
[15]
Clifton J C. Pediatr. Clin. North Am., 2007, 54(2): 237.
[16]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007
[17]
Bravo A G, Cosio C, Amouroux D, Zopfi J, Chevalley P A, Spangenberg J E, Ungureanu V G, Dominik J. Water Res., 2014, 49: 391.

doi: 10.1016/j.watres.2013.10.024
[18]
Kim K H, Kabir E, Jahan S A. J. Hazard. Mater., 2016, 306: 376.

doi: S0304-3894(15)30231-4 pmid: 26826963
[19]
Minoia C, Ronchi A, Pigatto P, Guzzi G. Crit. Rev. Toxicol., 2009, 39(7): 627.

doi: 10.1080/10408440903055353
[20]
Azevedo B F, Furieri L B, Pecanha F M, Wiggers G A, Vassallo P F, Simoes M R, Fiorim J, Batista P R D, Fioresi M, Rossoni L, Stefanon I, Alonso M J, Salaices M, Vassallo D V. J. Biomed. Biotechnol., 2012, 2012: 949048.
[21]
Colon-Rodriguez A, Hannon H E, Atchison W D. Neurotoxicology., 2017, 60: 308.

doi: 10.1016/j.neuro.2016.12.007
[22]
Luo J M, Fu K X, Yu D Y, Hristovski K D, Westerhoff P, Crittenden J C. ACS ES&T Engineering, 2021, 1(4): 623.
[23]
Vikrant K, Kim K H. Chem. Eng. J., 2019, 358: 264.

doi: 10.1016/j.cej.2018.10.022
[24]
Xia M D, Chen Z X, Li Y, Li C H, Ahmad N M, Cheema W A, Zhu S M. RSC Adv., 2019, 9(36): 20941.

doi: 10.1039/C9RA01924C
[25]
Ai K L, Ruan C P, Shen M X, Lu L H. Adv. Funct. Mater., 2016, 26(30): 5542.

doi: 10.1002/adfm.201601338
[26]
Bruno R, Mon M, Escamilla P, Ferrando-Soria J, Esposito E, Fuoco A, Monteleone M, Jansen J C, Elliani R, Tagarelli A, Armentano D, Pardo E. Adv. Funct. Mater., 2020, 31(6): 2008499.

doi: 10.1002/adfm.202008499
[27]
Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager T M. J. Am. Chem. Soc., 2018, 140(43): 14413.

doi: 10.1021/jacs.8b09119
[28]
Tunsu C, Wickman B. Nat. Commun., 2018, 9(1): 4876.

doi: 10.1038/s41467-018-07300-z
[29]
Candeago R, Kim K, Vapnik H, Cotty S, Aubin M, Berensmeier S, Kushima A, Su X. ACS Appl. Mater. Interfaces, 2020, 12(44): 49713.

doi: 10.1021/acsami.0c15570
[30]
Franco M W, Mendes L A, Windmöller C C, Moura K a F, Oliveira L G, Barbosa F R. Water Air Soil Pollut., 2018, 229(4): 127.

doi: 10.1007/s11270-018-3782-5
[31]
Luo J M, Yu D Y, Hristovski K D, Fu K X, Shen Y W, Westerhoff P, Crittenden J C. Environ. Sci. Technol., 2021, 55(8): 4287.

doi: 10.1021/acs.est.0c07936
[32]
Ma L J, Wang Q, Islam S M, Liu Y C, Ma S L, Kanatzidis M G. J. Am. Chem. Soc., 2016, 138(8): 2858.

doi: 10.1021/jacs.6b00110
[33]
Fu K X, Liu X, Yu D Y, Luo J M, Wang Z W, Crittenden J C. Environ. Sci. Technol., 2020, 54(24): 16212.

doi: 10.1021/acs.est.0c05532
[34]
Peng Y G, Huang H L, Zhang Y X, Kang C F, Chen S M, Song L, Liu D H, Zhong C L. Nat. Commun., 2018, 9(1): 187.

doi: 10.1038/s41467-017-02600-2
[35]
Xia Z J, Zhao Y S, Darling S B. Adv. Mater. Interfaces, 2020, 8(1): 2001507.

doi: 10.1002/admi.202001507
[36]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1: 10.
[37]
Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.

doi: 10.1126/science.aal1585
[38]
Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid. Interface Sci., 2015, 437: 211.

doi: 10.1016/j.jcis.2014.09.046
[39]
Mondal S, Chatterjee S, Mondal S, Bhaumik A. ACS Sustain. Chem. Eng., 2019, 7(7): 7353.

doi: 10.1021/acssuschemeng.9b00567
[40]
Ma Z Y, Liu F Y, Liu N S, Liu W, Tong M P. J. Hazard. Mater., 2021, 405: 124190.

doi: 10.1016/j.jhazmat.2020.124190
[41]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334 pmid: 30485740
[42]
Wang J L, Zhuang S T. Coord. Chem. Rev., 2019, 400: 213046.

doi: 10.1016/j.ccr.2019.213046
[43]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411
[44]
Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem. Int. Ed. Engl., 2011, 50(6): 1289.

doi: 10.1002/anie.201005919
[45]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136(45): 15885.

doi: 10.1021/ja5092936
[46]
Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6: 7786.

doi: 10.1038/ncomms8786 pmid: 26178865
[47]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256 pmid: 19281246
[48]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O'keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[49]
Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138(10): 3302.

doi: 10.1021/jacs.6b00652
[50]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550
[51]
Waller P J, Gandara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369
[52]
Jin E Q, Li J, Geng K Y, Jiang Q H, Xu H, Xu Q, Jiang D L. Nat. Commun., 2018, 9(1): 4143.

doi: 10.1038/s41467-018-06719-8
[53]
Lyu H, Diercks C S, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2019, 141(17): 6848.

doi: 10.1021/jacs.9b02848
[54]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. Engl., 2008, 47(18): 3450.

doi: 10.1002/anie.200705710
[55]
Mähringer A, Medina D D. Nat. Chem., 2020, 12: 985.

doi: 10.1038/s41557-020-00568-z pmid: 33093679
[56]
Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6): 2428.

doi: 10.1021/jacs.6b12328 pmid: 28121142
[57]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y H, Wei H, Nguyen N, Wojtas L, Ma S Q. J. Am. Chem. Soc., 2017, 139(7): 2786.

doi: 10.1021/jacs.6b12885 pmid: 28222608
[58]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842
[59]
Kappe C O. Angew. Chem. Int. Ed. Engl., 2004, 43(46): 6250.

doi: 10.1002/anie.200400655
[60]
Wang C B, Li Z Y, Chen J X, Li Z, Yin Y H, Cao L, Zhong Y L, Wu H. J. Membrane Sci., 2017, 523: 273.

doi: 10.1016/j.memsci.2016.09.055
[61]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503
[62]
Huang N, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137(22): 7079.

doi: 10.1021/jacs.5b04300 pmid: 26028183
[63]
Yang Y J, Faheem M, Wang L L, Meng Q H, Sha H Y, Yang N, Yuan Y, Zhu G S. ACS Cent. Sci., 2018, 4(6): 748.

doi: 10.1021/acscentsci.8b00232
[64]
Lu Q Y, Ma Y C, Li H, Guan X Y, Yusran Y, Xue M, Fang Q R, Yan Y S, Qiu S L, Valtchev V. Angew. Chem. Int. Ed. Engl., 2018, 57(21): 6042.

doi: 10.1002/anie.201712246
[65]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): e1705479.
[66]
Merí-Bofí L, Royuela S, Zamora F, Ruiz-González M L, Segura J L, Muñoz-Olivas R, Mancheño M J. J. Mater. Chem. A., 2017, 5(34): 17973.

doi: 10.1039/C7TA05588A
[67]
Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2016, 138(48): 15519.

pmid: 27934009
[68]
Bertrand G H, Michaelis V K, Ong T C, Griffin R G, Dinca M. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(13): 4923.

doi: 10.1073/pnas.1221824110
[69]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p
[70]
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science., 2011, 332(6026): 228.

doi: 10.1126/science.1202747 pmid: 21474758
[71]
Yoo J T, Cho S J, Jung G Y, Kim S H, Choi K H, Kim J H, Lee C K, Kwak S K, Lee S Y. Nano Lett., 2016, 16(5): 3292.

doi: 10.1021/acs.nanolett.6b00870
[72]
Fu J R, Das S, Xing G L, Ben T, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138(24): 7673.

doi: 10.1021/jacs.6b03348
[73]
Yao B J, Zhang X M, Li F, Li C, Dong Y B. ACS Appl. Nano Mater., 2020, 3(10): 10360.

doi: 10.1021/acsanm.0c02276
[74]
Yuan S S, Li X, Zhu J Y, Zhang G, van Puyvelde P, van Der Bruggen B. Chem. Soc. Rev., 2019, 48(10): 2665.

doi: 10.1039/C8CS00919H
[75]
Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016, 138(9): 3031.

doi: 10.1021/jacs.5b10754
[76]
Cui W R, Jiang W, Zhang C R, Liang R P, Liu J, Qiu J D. ACS Sustain. Chem. Eng., 2019, 8(1): 445.

doi: 10.1021/acssuschemeng.9b05725
[77]
Yang Z L, Gu Y Y, Yuan B L, Tian Y M, Shang J, Tsang D C W, Liu M X, Gan L H, Mao S, Li L C. J. Hazard. Mater., 2021, 403: 123702.

doi: 10.1016/j.jhazmat.2020.123702
[78]
Fu Y, Yu W G, Zhang W J, Huang Q, Yan J, Pan C Y, Yu G P. Polym. Chem., 2018, 9(30): 4125.

doi: 10.1039/C8PY00419F
[79]
Li Y, Wang C, Ma S J, Zhang H Y, Ou J J, Wei Y M, Ye M L. ACS Appl. Mater. Interfaces, 2019, 11(12): 11706.

doi: 10.1021/acsami.8b18502
[80]
Wang Z Y, Mi B X. Environ. Sci. Technol., 2017, 51(15): 8229.

doi: 10.1021/acs.est.7b01466
[81]
Huang L J, Shen R J, Liu R Q, Shuai Q. J. Hazard. Mater., 2020, 392: 122320.

doi: 10.1016/j.jhazmat.2020.122320
[82]
Wang L L, Xu H M, Qiu Y X, Liu X S, Huang W J, Yan N Q, Qu Z. J. Hazard. Mater., 2020, 389: 121824.

doi: 10.1016/j.jhazmat.2019.121824
[83]
Barakat M A. Arab. J. Chem., 2011, 4(4): 361.

doi: 10.1016/j.arabjc.2010.07.019
[84]
Burakov A E, Galunin E V, Burakova I V, Kucherova A E, Agarwal S, Tkachev A G, Gupta V K. Ecotoxicol. Environ. Saf., 2018, 148: 702.

doi: 10.1016/j.ecoenv.2017.11.034
[85]
Lu X F, Ji W H, Yuan L, Yu S, Guo D S. Ind. Eng. Chem. Res., 2019, 58(38): 17660.

doi: 10.1021/acs.iecr.9b03138
[86]
Li Y F, Hu T L, Chen R, Xiang R, Wang Q, Zeng Y F, He C Y. Chem. Eng. J., 2020, 398: 125566.

doi: 10.1016/j.cej.2020.125566
[87]
Yu Y X, Li G L, Liu J H, Yuan D Q. Chem. Eng. J., 2020, 401: 126139.

doi: 10.1016/j.cej.2020.126139
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[10] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[14] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.