中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1615-1625 DOI: 10.7536/PC160547 Previous Articles   Next Articles

• Review and comments •

Plasmon-Enhanced Upconversion Fluorescence and Its Application

Zhao Bing1,2,3, Qi Ning1,2, Zhang Keqin1,2*   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China;
    2. National Engineering Laboratory for Modern Silk(Suzhou), Suzhou 215021, China;
    3. Library of Soochow University, Suzhou 215006, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51503137, 51373110), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Scientific and Technological Innovation Team (2013).
PDF ( 1891 ) Cited
Export

EndNote

Ris

BibTeX

Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of emitting visible light under near-infrared light excitation through a two-photon or multi-photon mechanism. Compared to other fluorescent materials such as organic dyes and quantum dots, UCNPs own superior physicochemical features such as chemical stability, high photostability, long-lived luminescence, large anti-Stokes shifts, narrow emission bands and deep penetration, which show potential applications in bioimaging, sensors, lasers, photodynamic therapy, solar cells and so on. However, the quantum yield of UCNPs is relatively low due to the small absorption cross-section of activator in UCNPs, limiting their further application. Therefore, how to improve the luminescence intensity of UCNPs has become a hotspot. A variety of methods such as core-shell nanostructure, phase transition and plasmon-enhanced upconversion have been developed in order to improve the fluorescence intensity of UCNPs. Among these methods, plasmon-enhanced upconversion as an efficient strategy has attracted extensive interests. In this review, three kinds of mechanisms about plasmon-enhanced upconversion luminescence are introduced firstly. Then construction methods of metal-UCNPs systems including chemical methods and physical methods, application of plasmon-enhanced upconversion luminescence in solar cells, bioimaging, bioassay, photothermal therapy and photocatalysis are discussed in detail. Finally, the limitations and directions for future research of plasmon-enhanced upconversion luminescence are also proposed.

Contents
1 Introduction
2 Mechanisms
2.1 Plasmon-enhanced excitation
2.2 Plasmon-enhanced emission
2.3 Energy transfer
3 Methods
3.1 Chemical methods
3.2 Physical methods
4 Applications
4.1 Solar cells
4.2 Bioimaging
4.3 Bioassay
4.4 Photothermal therapy
4.5 Photocatalysis
5 Conclusion

CLC Number: 

[1] Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem. Rev., 2015, 115(1):395.
[2] Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Chem. Soc. Rev., 2015, 44(6):1416.
[3] 王亚立(Wang Y L), 李贞(Li Z), 刘志洪(Liu Z H). 化学进展(Progress in Chemistry), 2016, 28(5):617.
[4] Lim C S, Aleksandrovsky A, Molokeev M, Oreshonkov A, Atuchin V. Phys. Chem. Chem. Phys., 2015, 17(29):19278.
[5] Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C. Chem. Rev., 2015, 115(19):10725.
[6] Yang W, Li X, Chi D, Zhang H, Liu X. Nanotechnology, 2014, 25:482001.
[7] 刘涛(Liu T),孙丽宁(Sun L N),刘政(Liu Z),仇衍楠(Chou Y N),施利毅(Shi L Y). 化学进展(Progress in Chemistry), 2012, 24(2/3):304.
[8] 姜玲(Jiang L), 阙亚萍(Que Y P), 丁勇(Ding Y), 胡林华(Hu L H), 张昌能(Zhang C N), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2016, 28(5):637
[9] Huang X, Han S, Huang W, Liu X. Chem. Soc. Rev., 2013, 42(1):173.
[10] Goldschmidt J C, Fischer S. Adv. Opt. Mater., 2015, 3(4):510.
[11] Wu D M, Garcia-Etxarri A, Salleo A, Dionne J A. J. Phys. Chem. Lett., 2014, 5(22):4020.
[12] Chen Z, Sun W, Butt H, Wu S. Chem.-Eur. J., 2015, 21(25):9165.
[13] Han S, Deng R, Xie X, Liu X. Angew. Chem., Int. Ed., 2014, 53(44):11702.
[14] Lin H, Xu D, Li A, Teng D, Yang S, Zhang Y. Phys. Chem. Chem. Phys., 2015, 17(29):19515.
[15] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X. Nature, 2010, 463(7284):1061.
[16] Zhao C, Kong X, Liu X, Tu L, Wu F, Zhang Y, Liu K, Zeng Q, Zhang H. Nanoscale, 2013, 5(17):8084.
[17] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Nat. Mater., 2011, 10(12):968.
[18] Zhang F, Deng Y, Shi Y, Zhang R, Zhao D. J. Mater. Chem., 2010, 20(19):3895.
[19] Wang Y, Estakhri N M, Johnson A, Li H, Xu L, Zhang Z, Alu A, Wang Q, Shih C K. Sci. Rep., 2015, 5:10196.
[20] Li L, Green K, Hallen H, Lim S F. Nanotechnology, 2015, 26:025101.
[21] Zhan Q, Zhang X, Zhao Y, Liu J, He S. Laser Photonics Rev., 2015, 9(5):479.
[22] Ko C, Han Y, Wang W, Shieh J, Chen M. ACS Appl. Mater. Inter., 2014, 6(6):4179.
[23] Zeng S, Baillargeat D, Ho H, Yong K. Chem. Soc. Rev., 2014, 43(10):3426.
[24] Park W, Lu D, Ahn S. Chem. Soc. Rev., 2015, 44(10):2940.
[25] Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M. Appl. Surf. Sci., 2013, 270:712.
[26] Yin D, Wang C, Ouyang J, Zhang X, Jiao Z, Feng Y, Song K, Liu B, Cao X, Zhang L, Han Y, Wu M. ACS Appl. Mater. Inter., 2014, 6(21):18480.
[27] Feng A L, Lin M, Tian L, Zhu H Y, Guo H, Singamaneni S, Duan Z, Lu T J, Xu F. RSC Adv., 2015, 5(94):76825.
[28] Sun Q, Mundoor H, Ribot J C, Singh V, Smalyukh I I, Nagpal P. Nano Lett., 2014, 14(1):101.
[29] Lu D, Cho S K, Ahn S, Brun L, Summers C J, Park W. ACS Nano, 2014, 8(8):7780.
[30] Liu X, Lei D Y. Sci. Rep., 2015, 5:15235.
[31] Som T, Karmakar B. J. Appl. Phys., 2009, 105:013102.
[32] Dan H K, Zhou D, Wang R, Jiao Q, Yang Z, Song Z, Yu X, Qiu J. Ceram. Int., 2015, 41:2648.
[33] Chen X, Peng D, Ju Q, Wang F. Chem. Soc. Rev., 2015, 44(6):1318.
[34] Chen G, Agren H, Ohulchanskyy T Y, Prasad P N. Chem. Soc. Rev., 2015, 44(6):1680.
[35] Zhang X, Li B, Jiang M, Zhang L, Ma H. RSC Adv., 2016, 6(43):36528.
[36] Zhang H, Li Y, Ivanov I A, Qu Y, Huang Y, Duan X. Angew. Chem. Int. Ed., 2010, 49(16):2865.
[37] Kannan P, Rahim F A, Chen R, Teng X, Huang L, Sun H, Kim D. ACS Appl. Mater. Inter., 2013, 5(9):3508.
[38] Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q. Nanoscale, 2012, 4(16):5132.
[39] Deng W, Sudheendra L, Zhao J, Fu J, Jin D, Kennedy I M, Goldys E M. Nanotechnology, 2011, 22:325604.
[40] Priyam A, Idris N M, Zhang Y. J. Mater. Chem., 2012, 22(3):960.
[41] Fujii M, Nakano T, Imakita K, Hayashi S. J. Phys. Chem. C, 2013, 117(2):1113.
[42] Xu Z, Quintanilla M, Vetrone F, Govorov A O, Chaker M, Ma D. Adv. Funct. Mater., 2015, 25(20):2950.
[43] Kannan P, Rahim F A, Teng X, Chen R, Sun H, Huang L, Kim D. RSC Adv., 2013, 3(21):7718.
[44] Zhang F, Braun G B, Shi Y, Zhang Y, Sun X, Reich N O, Zhao D, Stucky G. J. Am. Chem. Soc., 2010, 132(9):2850.
[45] Zhang C, Lee J Y. J. Phys. Chem. C, 2013, 117(29):15253.
[46] Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y. Theranostics, 2013, 3(4):282.
[47] Li H, Deng Q, Liu B, Yang J, Wu B. RSC Adv., 2016, 6(16):13343.
[48] Yin D, Cao X, Zhang L, Tang J, Huang W, Han Y, Wu M. Dalton Trans., 2015, 44(24):11147.
[49] Xu W, Xu S, Zhu Y, Liu T, Bai X, Dong B, Xu L, Song H. Nanoscale, 2012, 4(22):6971.
[50] Das R, Phadke P, Khichar N, Chawla S. J. Mater. Chem. C, 2014, 2(42):8880.
[51] Feng W, Sun L, Yan C. Chem. Commun., 2009, (29):4393.
[52] Saboktakin M, Ye X, Oh S J, Hong S, Fafarman A T, Chettiar U K, Engheta N, Murray C B, Kagan C R. ACS Nano, 2012, 6(10):8758.
[53] Feng A L, You M L, Tian L, Singamaneni S, Liu M, Duan Z, Lu T J, Xu F, Lin M. Sci. Rep., 2015, 5:7779.
[54] Zhang H, Xu D, Huang Y, Duan X. Chem. Commun., 2011, 47(3):979.
[55] Zhao B, Qi N, Zhang K Q, Gong X. Phys. Chem. Chem. Phys., 2016, 18:15289.
[56] Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M. Appl. Surf. Sci., 2013, 270:712.
[57] Xu W, Zhu Y, Chen X, Wang J, Tao L, Xu S, Liu T, Song H. Nano Res., 2013, 6(11):795.
[58] Zhu Y, Xu W, Li G, Cui S, Liu X, Song H. Nanotechnology, 2015, 26:145602.
[59] Xu W, Song H, Chen X, Wang H, Cui S, Zhou D, Zhou P, Xu S. Chem. Commun., 2015, 51(8):1502.
[60] Chen X, Xu W, Zhang L, Bai X, Cui S, Zhou D, Yin Z, Song H, Kim D. Adv. Funct. Mater., 2015, 25(34):5462.
[61] Greybush N J, Saboktakin M, Ye X, Della Giovampaola C, Oh S J, Berry N E, Engheta N, Murray C B, Kagan C R. ACS Nano, 2014, 8(9):9482.
[62] Lee K, Park J, Kwon S J, Kwon H, Kyhm J, Kwak K, Jang H S, Kim S Y, Han J S, Lee S, Shin D, Ko H, Han I, Ju B, Kwon S, Ko D. Nano Lett., 2015, 15(4):2491.
[63] Saboktakin M, Ye X, Chettiar U K, Engheta N, Murray C B, Kagan C R. ACS Nano, 2013, 7(8):7186.
[64] Paudel H P, Zhong L, Bayat K, Baroughi M F, Smith S, Lin C, Jiang C, Berry M T, May P S. J. Phys. Chem. C, 2011, 115(39):19028.
[65] Zhang W, Ding F, Chou S Y. Adv. Mater., 2012, 24(35):P236.
[66] Fisher J, Zhao B, Lin C, Berry M, May P S, Smith S. J. Phys. Chem. C, 2015, 119(44):24976.
[67] Lian H, Hou Z, Shang M, Geng D, Zhang Y, Lin J. Energy, 2013, 57:270.
[68] Atre A C, Garcia-Etxarri A, Alaeian H, Dionne J A. J. Optics, 2012, 14:024008.
[69] Zhou B, Shi B, Jin D, Liu X. Nat. Nanotechnol., 2015, 10(11):924.
[70] Idris N M, Jayakumar M K G, Bansal A, Zhang Y. Chem. Soc. Rev., 2015, 44(6):1449.
[71] Tsang M, Bai G, Hao J. Chem. Soc. Rev., 2015, 44(6):1585.
[72] Cheng Z, Lin J. Macromol. Rapid Comm., 2015, 36(9):790.
[73] Yuan C, Chen G, Li L, Damasco J A, Ning Z, Xing H, Zhang T, Sun L, Zeng H, Cartwright A N, Prasad P N, Agren H. ACS Appl. Mater. Inter., 2014, 6(20):18018.
[74] Ramasamy P, Manivasakan P, Kim J. RSC Adv., 2014, 4(66):34873.
[75] Trupke T, Green M A, Wurfel P. J. Appl. Phys., 2002, 92(7):4117.
[76] Zhang X D, Jin X, Wang D F, Xiong S Z, Geng X H, Zhao Y. Physica Status Solidi (c), 2010, 7:1128.
[77] Yu J, Yang Y, Fan R, Wang P, Dong Y. Nanoscale, 2016, 8(7):4173.
[78] Li Q, Lin J, Wu J, Lan Z, Wang Y, Peng F, Huang M. Electrochim. Acta, 2011, 56(14):4980.
[79] Yu J, Yang Y, Fan R, Liu D, Wei L, Chen S, Li L, Yang B, Cao W. Inorg. Chem., 2014, 53(15):8045.
[80] Yu J, Yang Y, Fan R, Zhang H, Li L, Wei L, Shi Y, Pan K, Fu H. J. Power Sources, 2013, 243:436.
[81] Guo W, Zheng K, Xie W, Sun L, Shen L, Liu C, He Y, Zhang Z. Sol. Energ. Mat. Sol. C., 2014, 124:126.
[82] Chen W, Hou Y, Osvet A, Guo F, Kubis P, Batentschuk M, Winter B, Spiecker E, Forberich K, Brabec C J. Org. Electron., 2015, 19:113.
[83] Chen S, Peng B, Lu F, Mei Y, Cheng F, Deng L, Xiong Q, Wang L, Sun X, Huang W. Adv. Opt. Mater., 2014, 2(5):442.
[84] Lee S, Li W, Dhar P, Malyk S, Wang Y, Lee W, Benderskii A, Yoon J. Adv. Energy Mater., 2015, 5:1500761.
[85] Li Z Q, Li X D, Liu Q Q, Chen X H, Sun Z, Liu C, Ye X J, Huang S M. Nanotechnology, 2012, 23:025402.
[86] Liu T, Bai X, Miao C, Dai Q, Xu W, Yu Y, Chen Q, Song H. J. Phys. Chem. C, 2014, 118(6):3258.
[87] Liu Y, Xia Y, Jiang Y, Zhang M, Sun W, Zhao X. Electrochim. Acta, 2015, 180:394.
[88] Zhao P, Zhu Y, Yang X, Jiang X, Shen J, Li C. J. Mater. Chem. A, 2014, 2(39):16523
[89] Luoshan M, Bai L, Bu C, Liu X, Zhu Y, Guo K, Jiang R, Li M, Zhao X. J. Power Sources, 2016, 307:468.
[90] Ramasamy P, Kim J. Chem. Commun., 2014, 50(7):879.
[91] Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S, Liu Z. Angew. Chem., Int. Ed., 2011, 50(32):7385.
[92] Idris N M, Li Z, Ye L, Sim E K W, Mahendran R, Ho P C, Zhang Y. Biomaterials, 2009, 30(28):5104.
[93] Jalil R A, Zhang Y. Biomaterials, 2008, 29(30):4122.
[94] Ni J, Shan C, Li B, Zhang L, Ma H, Luo Y, Song H. Chem. Commun., 2015, 51(74):14054.
[95] Wang L Y, Yan R X, Hao Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2005, 44(37):6054.
[96] Zhang S, Wang J, Xu W, Chen B, Yu W, Xu L, Song H. J. Lumin., 2014, 147:278.
[97] Liu W, Liu G, Wang J, Dong X, Yu W. RSC Adv., 2016, 6(4):3250.
[98] Chen C, Lee P, Chan Y, Hsiao M, Chen C, Wu P C, Wu P R, Tsai D P, Tu D, Chen X, Liu R. J. Mater. Chem. B, 2015, 3(42):8293.
[99] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H. J. Mater. Chem., 2011, 21(17):6193.
[100] Ge M, Cao C, Li S, Tang Y, Wang L, Qi N, Huang J, Zhang K, Al-Deyab S S, Lai Y. Nanoscale, 2016, 8(9):5226.
[101] Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y. Small, 2016, 12(12):1640.
[102] Yin D, Zhang L, Cao X, Chen Z, Tang J, Liu Y, Zhang T, Wu M. Dalton Trans., 2016, 45(4):1467.[FL)] [ST] [WT] [LM]
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[8] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[13] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[14] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.