中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 935-944 DOI: 10.7536/PC141215 Previous Articles   Next Articles

• Review and comments •

Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries

Miao He*, Xue Yejian, Zhou Xufeng, Liu Zhaoping*   

  1. Advanced Li-ion Battery Engineering Lab, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21371176, 21103212).
PDF ( 1729 ) Cited
Export

EndNote

Ris

BibTeX

In the past few years, the metal air batteries developed fast due to their remarkably high theoretical energy output. So far, the oxygen reduction reaction catalysts still have been the bottleneck for high power application of metal air batteries because of their sluggish kinetics. Recently, the graphene-based oxygen reduction reaction catalysts (GORRC) with high catalytic activity have been intensively reported. In this review, we focus on the recent progress and current situation of GORRC, and divide them into three categories, graphene as catalyst support, nitrogen doped graphene as the catalyst, and hybrids of nitrogen doped graphene and other catalysts as the catalyst. As an outstanding catalyst support, graphene can not only decrease the application amount of active components but also improve their catalytic activity and long-term stability. After doped by nitrogen, the graphene catalysts exhibit enhanced catalytic activity for the oxygen reduction reaction. In addition, the excellent catalysts can be obtained as the nitrogen doped graphene and other type of catalysts are hybridized. The catalytic activity and long-term stability of the hybrids are even better than that of the commercial Pt/C catalyst. Furthermore, the remarks on the challenges and perspectives of research directions are proposed for further development of GORRC which can be used in the metal air batteries.

Contents
1 Introduction
2 Graphene as catalyst support
2.1 Noble metal supported by graphene
2.2 Transition metal oxide supported by graphene
3 N-doped graphene as catalyst
4 Hybrids of N-doped graphene and other catalysts
4.1 Hybrids of N-doped graphene and noble metal
4.2 Hybrids of N-doped graphene and transition metal oxide
4.3 Hybrids of N-doped graphene and N-doped carbon nanotube
5 Conclusion and outlook

CLC Number: 

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[2] Cheng F, Chen J. Chem. Soc. Rev., 2012, 41: 2172.
[3] Wang Z L, Xu D, Xu J J, Zhang X B. Chem. Soc. Rev., 2014,43:7746.
[4] Rahman M A, Wang X, Wen C. J. Electrochem. Soc., 2013, 160: A1759.
[5] Li Y, Dai H. Chem. Soc. Rev., 2014, 43: 5257.
[6] Kim H, Jeong G, Kim Y U, Kim J H, Park C M, Sohn H J. Chem. Soc. Rev., DOI: 10.1039/c3cs60177c.
[7] Neburchilov V, Wang H, Martin J J, Qu W. J. Power Sources, 2010, 195: 1271.
[8] Kraytsberg A, Ein-Eli Y. Nano Energy, 2013, 2: 468.
[9] Egan D R, León C P, Wood R J K, Jones R L, Stokes K R, Walsh F C. J. Power Sources, 2013, 236: 293.
[10] Pei P, Wang K, Ma Z. Applied Energy, 2014, 128: 315.
[11] 唐有根(Tang Y G). 功能材料 (J. Functional Materials), 2012, 9: 21.
[12] Goldstein J, Brown I, Koretz B. J. Power Sources, 1999, 80: 171.
[13] 陈天殷(Chen T Y). 汽车电器 (Auto Electric Parts), 2014, 12: 4.
[14] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y, Xia Y N. Science, 2009, 324: 1302.
[15] Bing Y H, Liu H S, Zhang L, Ghosh D, Zhang J J. Chem. Soc. Rev., 2010, 39: 2184.
[16] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493.
[17] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M. Nat. Mater., 2007, 6: 241.
[18] Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Norskov J K. Nat. Chem., 2009, 1: 552.
[19] Wu J, Yang H, Accounts Chem. Res., 2013,46(8):1848.
[20] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Yang S H. Nat. Chem., 2011, 3: 546.
[21] Li Y G, Hasin P, Wu Y Y. Adv. Mater., 2010, 22: 1926.
[22] Goodenough J B, Manoharan R, Paranthaman M. J. Am. Chem. Soc., 1990, 112: 2076.
[23] Morozan A, Jousselme B, Palacin S. Energy Environ. Sci., 2011, 4: 1238.
[24] Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. J. Phys. Chem. C, 2009, 113: 15068.
[25] Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B. Electrochem. Commun., 2006, 8: 707.
[26] Chen J, Takanabe K, Ohnishi R, Lu D L, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubotaa J, Domen K. Chem. Commun., 2010, 46: 7492.
[27] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. Energy Environ. Sci., 2011, 4: 3167.
[28] Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelanay P. Energy Environ. Sci., 2011, 4: 114.
[29] Bezerra C W B, Zhang L, Lee K, Liu H S, Marques A L B, Marques E P, Wang H J, Zhang J J. Electrochim. Acta, 2008, 53: 4937.
[30] Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 32: 471.
[31] McCreery R L. Chem. Rev., 2008, 108: 2646.
[32] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Science, 2009, 323: 760.
[33] Zhang W M, Sherrell P, Minett A I, Razal J M, Chen J. Energy Environ. Sci., 2010, 3: 1286.
[34] Xie X, Pasta M, Hu L B, Yang Y, McDonough J, Cha J, Criddle C S, Cui Y. Energy Environ. Sci., 2011, 4: 1293.
[35] Yang W, Fellinger T P, Antonietti M. J. Am. Chem. Soc., 2011, 133: 206.
[36] Yoo E, Zhou H. ACS Nano, 2011, 5: 3020.
[37] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183.
[38] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4: 25.
[39] Wu J, Pisula W, Mullen K. Chem. Rev., 2007, 107: 718.
[40] 杨苏东(Yang S D), 南京航空航天大学博士学位论文(Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics), 2012.
[41] Tang S, Sun G, Qi J, Sun S, Guo J, Xin Q, Geir M H. Chin. J. Catal., 2010, 31: 12.
[42] Liu Y, Wang L, Wang G, Deng C, Wu B, Gao Y. J. Phys. Chem. C, 2010, 114: 21417.
[43] Li W Z, Liang C H, Qiu J S, Zhou W J, Han H M, Wei Z B, Sun G Q, Xin Q. Carbon, 2002, 40: 791.
[44] Guo J S, Sun G Q, Wang Q, Wang G X, Zhou Z H, Tang S H, Jiang L H, Zhou B, Xin Q. Carbon, 2006, 44: 152.
[45] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Nature, 2001, 412: 169.
[46] Chen X M, Wu G H, Chen J M, Chen X, Xie Z, Wang X. J. Am. Chem. Soc., 2011, 133: 3693.
[47] 钟轶良(Zhong Y L), 莫再勇(Mo Z Y), 杨莉君(Yang L J), 廖世军(Liao S J). 化学进展(Progress in Chemistry), 2013, 55: 717.
[48] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chinese Sci. Bull.), 2009, 54: 2657.
[49] 李志扬(Li Z Y), 王小美(Wang X M), 倪红军(Ni H J), 葛禹锡(Ge Y X), 朱昱(Zhu Y). 现代化工(Modern Chemical Industry), 2013, 33: 46.
[50] Bikkarolla S K, Cumpson P, Joseph P, Papakonstantinou P, Faraday Discuss., 2014, 173: 415.
[51] 李云霞(Li Y X), 魏子栋(Wei Z D), 赵巧玲(Zhao Q L), 丁炜(Ding W), 张骞(Zhang Q), 陈四国(Chen S G). 物理化学学报(Acta Phys. Chim. Sin.), 2011, 27: 858.
[52] Chen H S, Liang Y T, Chen T Y, Tseng Y C, i Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem. Commun., 2014, 50: 11165.
[53] Li Y, Li Y, Zhu E, McLouth T, Chiu C Y, Huang X, Huang Y. J. Am. Chem. Soc., 2012, 134: 12326.
[54] Yang J, Tian C, Wang L, Fu H. J. Mater. Chem., 2011, 21: 3384.
[55] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem. Commun., 2013, 28: 100.
[56] 夏骥(Xia J), 张全生(Zhang Q S), 郭东莉(Guo D L), 李硕(Li S), 闫凡奇(Yan F Q). 无机化学学报(Chinese J. Inorg. Chem.), 2014, 30: 1305.
[57] 靳琪(Jin Q), 裴龙凯(Pei L K), 胡宇翔(Hu Y X), 杜婧(Du J), 韩晓鹏(Han X P), 程方益(Cheng F Y), 陈军(Chen J). 化学学报(Acta Chimica Sinica), 2014,72: 920.
[58] Sun M, Liu H, Liu Y, Qu J, Li J. Nanoscale, 2015, 7: 1250.
[59] Kim B S, Cho J P, Kon S, Lee J, Lee T M. KR2013010832-A, 2013.
[60] Zhang D, Wu J. CN103240080-A, 2013.
[61] 鲁振江(Lu Z J), 徐茂文(Xu M W), 包淑娟(Bao S J), 柴卉(Chai H). 化学学报(Acta Chim. Sinica), 2013, 71: 957.
[62] Lee J S, Lee T, Song H K, Cho J, Kim B S. Energy Environ. Sci., 2011, 4: 4148.
[63] Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q. Energy Environ. Sci., 2012, 5: 9765.
[64] Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, Ma Z, Li J, Chen Y, Kim Y, Chen L. J. Mater. Chem. A, 2014, 2: 7188.
[65] Guo S, Zhang S, Wu L, Sun S. Angew. Chem. Int. Ed., 2012, 51: 11770.
[66] Cui L, Lv G, Dou Z, He X. Electrochim. Acta, 2013, 106: 272.
[67] Pascone P A, Berk D, Meunier J L. Catal. Today, 2013, 211: 162.
[68] Lee D U, Kim B J, Chen Z. J. Mater. Chem. A, 2013, 1: 4754.
[69] Prabu M, Shanmugam S. International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), New York: IEEE, 2013, 468.
[70] Prabu M, Ramakrishnan P, Nara H, Momma T, Osaka T, Shanmugam S. ACS Appl. Mater. Interfaces, 2014, 6: 16545.
[71] Zhang L, Xia Z. J. Phys. Chem. C, 2011, 115: 11170.
[72] Biddinger E J, Deak D V, Ozkan U S. Top. Catal., 2009, 52: 1566.
[73] Liu R L, Wu D Q, Feng X L. Angew. Chem. Int. Ed., 2010, 49: 2565.
[74] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321.
[75] Wei D, Liu Y, Wang Y, Zhang H L, Huang L P, Yu G. Nano Letters, 2009, 9: 1752.
[76] Shao Y, Zhang S, Engelhard M H, Li G S, Shao G C, Wang Y, Liu J, Aksay I A, Lin Y H. J. Mater. Chem., 2010, 20: 7491.
[77] Wang Y, Shao Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4: 1790.
[78] Li N, Wang Z, Zhao K, Shi Z J, Gu Z N, Xu S K. Carbon, 2010, 48: 255.
[79] Panchokarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Adv. Mater., 2009, 21: 4726.
[80] 马贵香(Ma G X), 赵江红(Zhao J H), 郑剑锋(Zheng J F), 朱珍平(Zhu Z P). 新型炭材料 (New Carbon Mater.), 2012, 27: 258.
[81] Higgins D, Chen Z, Lee D U, Chen Z. J. Mater. Chem. A, 2013, 1: 2639.
[82] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5: 4350.
[83] 李静(Li J), 王贤保(Wang X B), 杨佳(Yang J), 杨旭宇(Yang X Y), 万丽(Wan L). 高等学校化学学报 (Chem. J. Chinese Universities), 2013, 34: 800.
[84] Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26: 16096.
[85] Deng H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W X, Fu Q A, Ma X C. Chem. Mater., 2011, 23: 1188.
[86] Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Linc J, Ruoff R S. Energy Environ. Sci., 2012, 5: 7936.
[87] Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. Energy Environ. Sci., 2011, 4: 760.
[88] Lin Z, Song M, Ding Y, Liu Y, Liu M, Wong C. Phys. Chem. Chem. Phys., 2012, 14: 3381.
[89] Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel E L G, Ajayan P M, Tour J M. ASC Nano, 2014, 8:10837.
[90] Cao H, Zhou X, Qin Z, Liu Z. Carbon, 2013, 56: 218.
[91] Xin Y C, Liu J G, Jie X, Liu W M, Liu F Q, Yin Y, Gu J, Zou Z G. Electrochim. Acta, 2012, 60: 354.
[92] Liu C S, Liu X C, Wang G C, Liang R P, Qiu J D. J. Electroanal. Chem., 2014, 728: 41.
[93] Dhavale V M, Gaikwad S S, Kurungot S. J. Mater. Chem. A, 2014, 2: 1383.
[94] Gracia-Espino E, Jia X, Wågberg T. J. Phys. Chem. C, 2014, 118: 2804.
[95] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater., 2011, 10: 780.
[96] Liang Y Y, Wang H L, Zhou J G, Li Y G, Wang J, Regier T, Dai H J. J. Am. Chem. Soc., 2012, 134: 3517.
[97] Li S S, Cong H P, Wang P, Yu S H. Nanoscale, 2014, 6: 7534.
[98] He Q, Li Q, Khene S, Ren X, López-Suárez F E. J. Phys. Chem. C, 2013, 117: 8697.
[99] Park H W, Lee D U, Nazar L F, Chen Z. J. Electrochem. Soc., 2013, 160: A344.
[100] Bag S, Roy K, Gopinath C S, Raj C R. ACS Appl. Mater. Interfaces, 2014, 6: 2692.
[101] Duan J, Chen S, Dai S, Qiao S Z. Adv. Funct. Mater., 2014, 24: 2072.
[102] Bikkarolla S K, Yu F, Zhou W, Joseph P, Cumpson P, Papakonstantinou P. J. Mater. Chem. A, 2014, 2: 14493.
[103] Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.
[104] Prabu M, Ramakrishnan P, Shanmugam S. Electrochem. Commun., 2014, 41: 59.
[105] Wu G, Mack N H, Gao W, Ma S, Zhong R, Han J, Baldwin J K, Zelenay P. ACS Nano, 2012, 6: 9764.
[106] Cho C H, Chung M W, Kwon H C, Chung J H, Woo S I. Appl. Catal. B- Environ., 2014, 144: 760.
[107] Tian G L, Zhao M Q, Yu D, Kong X Y, Huang J Q, Zhang Q, Wei F. Small, 2014, 10: 2251.
[108] Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K. Carbon, 2014, 73: 361.
[109] Higgins D C, Hoque M A, Hassan F, Choi J Y, Kim B, Chen Z. ACS Catal., 2014, 4: 2734.
[110] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[14] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[15] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.