中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1712-1719 DOI: 10.7536/PC140547 Previous Articles   Next Articles

• Review •

The Application of Micro/Nanomotor in Biosensing

Yu Xiaoping, Wu Jie*, Ju Huangxian   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the National Basic Research Program of China (No. 2010CB732405), the National Natural Science Foundation of China (No. 21105046), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20110091120012), and the Natural Science Foundation of Jiangsu Province (No. BK2011552)

PDF ( 1835 ) Cited
Export

EndNote

Ris

BibTeX

Micro/nanomotors are newly developed micro/nanoscale autonomous materials, and have been gradually applied in many fields such as bioanalysis and drug delivery owing to the advantages of simple preparation and mass production. By template-based electrodeposition and mechanical etching, micro/nanomotors in different shapes and compositions have been prepared. The most developed micro/nanomotors are asymmetric nanowire and microsphere and conical tube based motors. The motor based micro/nano biosensors can be prepared easily by functionalizing the motors with specific bioreceptors. Due to the complexity of the biological sample composition, traditional detection methods are often time-consuming and complicated because of multi cleaning and separation steps. However, benefiting from the unique property of autonomic movement, the motor based micro/nano biosensors can recognize, isolate and enrich target biomolecules from untreated sample solutions autonomously, hence realize the rapid, sensitive and in situ detection of target biomolecules such as DNA, protein, cell and so on. Generally, the micro/nanomotors can be propelled by chemical and field energies, for example, chemical reactions, magnetic field and ultrasound. In this review, we briefly introduce the motion mechanism of different micro/nanomotors, summarize the recent advances of micro/nanomotor-based biosensing applications in protein, DNA and cell detection and drug delivery, and prospect the future development of artificial micro/nanomotors.

Contents
1 Introduction
2 The mechanism of micro/nanomotors
2.1 Chemically powered micro/nanomotors
2.2 Magnetically and ultrasound propelled micro/nanomotors
3 The application of micro/nanomotor in biosensing
3.1 Micro/nanomotors for isolation and detection of protein
3.2 Micro/nanomotors for isolation and detection of DNA
3.3 Micro/nanomotors for isolation and enrichment of bacterial and cancer cells
3.4 Micro/nanomotors for immunoassay
3.5 Micro/nanomotors for drug delivery
4 Conclusions and outlook

CLC Number: 

[1] 周继平(Zhou J P). 医学信息手术学分册(Medical Information Operations Sciences Fascicule),2006,19(2): 60.
[2] 吴魏霞(Wu W X). 北京印刷学院学报(Journal of Beijing Institute of Graphic Communication), 2012,20(2): 64.
[3] 王志松(Wang Z S). 自然杂志(Chinese Journal of Nature),2006,28(3): 160.
[4] Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. J. Am. Chem. Soc., 2006, 128: 14881.
[5] Gao W, Sattayasamitsathit S, Manesh K M, Weihs D, Wang J. J. Am. Chem. Soc., 2010, 132: 14403.
[6] Demirok U K, Laocharoensuk R, Manesh K M, Wang J. Angew. Chem. Int. Ed., 2008, 47: 9349.
[7] Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A. Angew. Chem. Int. Ed., 2011, 123: 9546.
[8] Wilson D A, Nolte R J M, van Hest J C M. Nat. Chem., 2012, 4: 268.
[9] Gao W, Pei A, Feng X M, Hennessy C, Wang J. J. Am. Chem. Soc., 2013, 135: 998.
[10] Huang C X, Shen X T. Chem. Commun., 2014, 50: 2646.
[11] Simmchen J, Baeza A, Ruiz D, Esplandiu M J, Vallet-Regí M. Small, 2012, 8: 2053.
[12] Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J. Nanoscale, 2012, 4: 2447.
[13] Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J. J. Am. Chem. Soc., 2012, 134: 15217.
[14] Guix M, Orozco J, Garcia M, Gao W, Sattayasamitsathit S, MerkociA, Escarpa A, Wang J. ACS Nano, 2012, 6: 4445.
[15] Mei Y F, Solovev A A, Sanchez S, Schmidt O G. Chem. Soc. Rev., 2011, 40: 2109.
[16] Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-Obregón A, Nelson B J. Adv. Mater., 2012, 24: 811.
[17] Zhang L, Abbott J J, Dong L, Peyer K E, Kratochvil B E, Zhang H, Bergeles C, Nelson B J. Nano Lett., 2009, 9: 3663.
[18] Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[19] Mirkovic T, Foo M L, Arsenault A C, Fournier-Bidoz S, Zacharia N S, Ozin G A. Nat. Nanotech., 2007: 565.
[20] Dong B, Zhou T, Zhang H, Li C Y. ACS Nano, 2013, 7: 5192.
[21] Sundararajan S, Lammert P E, Zudans A W, Crespi V H, Sen A. Nano Lett., 2008, 8: 1271.
[22] Wu J, Balasubramanian S, Kagan D, Manesh K M, Campuzano S, Wang J. Nat. Commun., 2010, 1: 36.
[23] Wang J, Gao W. ACS Nano, 2012, 6: 5745.
[24] Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Nanoscale, 2013, 5: 1273.
[25] Baraban L, Harazim S M, Sanchez S, Schmidt O G. Angew. Chem. Int. Ed., 2013, 52: 5552.
[26] Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[27] Burdick J, Laocharoensuk R, Wheat P M, Posner J D, Wang J. J. Am. Chem. Soc., 2008, 130: 8164.
[28] Zhang L, Petit T, Lu Y, Kratochvil B E, Peyer K E, Pei R, Lou J, Nelson B J. ACS Nano, 2010, 4: 6228.
[29] Zhao G J, Seah T H, Pumera M. Chem. Eur. J., 2011, 17: 12020.
[30] Cobbold R S C. New York: Oxford University Press , 2007.
[31] Wang W, Castro L A, Hoyos M, Mallouk T E. ACS Nano, 2012, 6: 6122.
[32] Garcia-Gradilla X, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7: 9232.
[33] Gibbs J G, Zhao Y P. Appl. Phys. Lett., 2009, 94: 163104.
[34] Mei Y F, Huang G S, Solovev A A, Urena E B, Monch I, Ding F, Reindl T, Fu R K Y, Chu P K, Schmidt O G. Adv. Mater., 2008, 20: 4085.
[35] Solovev A A, Mei Y F, Urena E B, Huang G S, Schmidt O G. Small, 2009, 5: 1688.
[36] Manesh K M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J. ACS Nano, 2010, 4: 1799.
[37] Liu R, Sen A. J. Am. Chem. Soc., 2011, 133: 20064.
[38] Gao W, Sattayasamitsathit S, Orozco J, Wang J. J. Am. Chem. Soc., 2011, 133: 11862.
[39] Hong Y Y, Diaz M, Cordova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20: 1568.
[40] Ibele M, Mallouk T E, Sen A. Angew. Chem. Int. Ed., 2009, 48: 3308.
[41] McDermott J J, Kar A, Daher M, Klara S, Wang G, Sen A, Velegol D. Langmuir, 2012, 28: 15491.
[42] Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, Marago O M. ACS Nano, 2009, 3: 3077.
[43] Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[44] Pak O S, Gao W, Wang J, Lauga E. Soft Matter, 2011, 7: 8169.
[45] Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126: 13424.
[46] Gao W, Uygun A, Wang J. J. Am. Chem. Soc., 2012, 134: 897.
[47] Gao W, Pei A, Dong R F, Wang J. J. Am. Chem. Soc., 2014, 136: 2276.
[48] Gao W, Pei A, Wang J. ACS Nano, 2012, 6: 8432.
[49] Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52: 1.
[50] Orozco J, Cortés A, Cheng G Z, Sattayasamitsathit S, Gao W, Feng X M, Shen Y F, Wang J. J. Am. Chem. Soc., 2013, 135: 5336.
[51] Campuzano S, Orozoc J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen J C, Merkoci A, Wang J. Nano Lett., 2012, 12: 396.
[52] Wang Y, Fei S, Byun Y M, Lammert P E, Crespi V H, Sen A. J. Am. Chem. Soc., 2009, 131: 9926.
[53] Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Anal. Chem., 2011, 83: 7962.
[54] Piunno P A E, Krull U J, Hudson R H E, Damha M J, Cohen H. Anal. Chem., 1995, 67: 2635.
[55] Ferguson J A, Boles T C, Adams C P, Walt D R. Nat. Biotechnol., 1996, 14: 1681.
[56] Wang J. Nucl. Acids. Res., 2000, 28: 3011.
[57] Gooding J J. Electroanalysis, 2002, 14: 1149.
[58] Okahata Y. J. Am. Chem. Soc., 1992, 114: 8299.
[59] Duarte G R M, Price C W, Littlewood J L, Haverstick D M, Ferrance J P, Carrilho E, Landers J P. Analyst, 2010, 135: 531.
[60] Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K. Small, 2008, 4: 410.
[61] Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G U, Wang J. Nano Lett., 2011, 11: 2083.
[62] Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[63] Laurino P, Kikkeri R. Nano Lett., 2011, 11: 73.
[64] Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci I H. Analyst, 2011, 136: 740.
[65] Balasubramanian S, Kagan D, Hu C M J, Campuzano S, Lobo-Castanon M J, Lim N, Kang D Y, Zimmerman M, Zhang L F, Wang J. Angew. Chem. Int. Ed., 2011, 50: 4161.
[66] Wang J. Biosens. Bioelectron., 2006, 21: 1887.
[67] Wu J, Fu Z F, Yan F, Ju H X. TrAC-Trend. Anal. Chem., 2007, 26: 679.
[68] Sergey M B, Wolfbeis O S. Chem. Rev., 2008, 108: 423.
[69] García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoci A, Wang J. Nanoscale, 2013, 5: 1325.
[70] Yu X P, Li Y N, Wu J, Ju H X. Anal. Chem., 2014, 86: 4501.
[71] Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt O G. ACS Nano, 2012, 6: 1751.
[72] Wu Z G, Wu Y J, He W P, Lin X K, Sun J M, He Q. Angew. Chem. Int. Ed., 2013, 52: 7000.
[73] Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Erik Shipton, Fullerton E E, Zhang L F, Lauga E, Wang J. Small, 2012, 8: 460.
[74] Kagan D, Benchimol M J, Claussen J C, Chuluun-Erdene E, Esener S, Wang J. Angew. Chem. Int. Ed., 2012, 51: 7519.

[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[3] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[4] Jiajia Wang, Huiying Wu, Renfeng Dong, Yuepeng Cai. Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy [J]. Progress in Chemistry, 2021, 33(5): 883-894.
[5] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[6] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[7] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[8] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[9] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.
[10] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[11] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[12] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[13] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[14] Tu Wenwen, Lei Jianping, Ju Huangxian. Nanoassembly and Biosensing of Porphyrins [J]. Progress in Chemistry, 2011, 23(10): 2113-2118.
[15] Ma Zhanfang Si Guoli Chu Yiming Chen Ying. Advances on Triangular Silver Nanoprisms [J]. Progress in Chemistry, 2009, 21(09): 1847-1856.