中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2056-2068 DOI: 10.7536/PC200919 Previous Articles   Next Articles

• Review •

Janus Particles Applied in Environmental Detection

Danqing Zou1, Cong Wang1(), Fei Xiao1, Yuchen Wei1, Lin Geng3, Lei Wang2,3()   

  1. 1 Department of Microwave Engineering, School of Electronics and Information Engineering, Harbin Institute of Technology,Harbin 150001, China
    2 Key Laboratory of New Energy Conversion and Storage Key Material Technology, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Harbin Institute of Technology,Harbin 150001, China
    3 School of Material Science and Engineering, Harbin Institute of Technology,Harbin 150001, China
  • Received: Revised: Online: Published:
  • Contact: Cong Wang, Lei Wang
  • Supported by:
    National Natural Science Foundation of China(52073071); National Natural Science Foundation of China(51703043); China Postdoctoral Science Foundation(2017M611367); China Postdoctoral Science Foundation(2016M600247); China Postdoctoral Science Foundation(2020T130144); Natural Science Foundation of Heilongjiang(F2018014); Postdoctoral Science Foundation of Heilongjiang(LBH-Z17056); Postdoctoral Science Foundation of Heilongjiang(LBH-Z16066); Laboratory of Zhejiang(2019MC0AB03)
Richhtml ( 20 ) PDF ( 409 ) Cited
Export

EndNote

Ris

BibTeX

Janus particles, also called Yin-Yang structured particles or bifacial asymmetric particles, refer to asymmetric particles with two or more different chemical compositions or properties. During the past decade, Janus particles have gradually become a new type of functional materials in the fields of biomedicine, catalysis, materials and anti-fouling, due to their unique structure and function. In the field of environmental detection, Janus materials also provide new research directions for improving detection sensitivity, selectivity and stability, on account of their special optical, magnetic and electrical properties. However, there is no updated review in environmental detection field yet. To summarize and provide the guidance for the future development, this article mainly discusses the properties, advantages and applications of Janus materials in the field of environmental detection. Finally, based on our group’s research experience and the problems in this field, this article puts forward an outlook on the development and future development direction of this field, in order to provide guidance for the future development of this field.

Contents

1 Introduction

2 Application of static Janus particles in the field of environmental detection

2.1 Detection based on optical properties of static Janus particles

2.2 Detection based on electrochemistry properties of static Janus particles

2.3 Detection based on other properties of static Janus particles

3 Application of Janus micro-nano motors in the field of environmental detection

3.1 Detection based on optical properties of Janus micro-nano motors

3.2 Detection based on electrochemistry properties of Janus micro-nano motors

3.3 Detection based on the motion performance of Janus micro-nano motors

4 Conclusions and outlook

Fig. 1 (A) the schematic illustration of the fabrication of biphasic alginate particle having embedded PDA liposomes and sensing image[41]. Adapted from ref 41, Copyright 2012, American Chemical Society.(B) Janus magnetic particles realize rapid detection and processing of target substances, particle images and sensing images under optical microscope[42]. Adapted from ref 42, Copyright 2014, American Chemical Society.(C) Schematic diagram of preparation and sensing of gold-mesoporous silica particles[44]. Adapted from ref 44, Copyright 2019, Wiley-VCH VerlagGmbH &Co.KGaA, Weinheim.(D) New detection method of tetracycline concentration based on digital processing[45]. Adapted from ref 45, Copyright 2019, Elsevier
Fig. 2 Schematic diagram of Ag-Au nanoparticles combined with MXenes nanosheets to achieve OTA sensing and sensing results[48]. Adapted from ref 48, Copyright 2019, American Chemical Society
Fig. 3 Janus particles realize sensing function based on electrochemical detection mechanism.(A) Gold-Mesoporous Silica Combined with CNT to Realize Glucose Sensing Process and Sensing Results[50]. Adapted from ref 50, Copyright 2015, Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(B) Aptamer modified polystyrene to achieve OTA sensing process and sensing results[51]. Adapted from ref 51, Copyright 2019, Elsevier
Fig. 4 (A) Pt-fluorescence amine hemispherical coated silica motor particles for DCP sensing:a) Particle preparation process, b~d) energy-dispersive X-ray spectroscopy images, DCP sensing results[64].Adapted from ref 64, Copyright 2015, Royal Society of Chemistry.(B) Image of Bubble Propelled Micro Motor Particle Optical Microscope, Fluorescence quenching in a multi-motion mechanism[65]. Adapted from ref 65, Copyright 2017, Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(C) LPS sensing images,Fluorescence decay diagram in multi-motion mechanism[66]. Adapted from ref 66, Copyright 2018,American Chemical Society.(D) Capsule structure motor particle preparation process and fluorescence microscopy images, Fluorescence quenching of different samples in different concentrations of TNT solutions[67].Adapted from ref 67 Copyright 2019,Beilstein Journal of Nanotechnology
Fig. 5 (A) Metal Pt bubble based propelled motor particles:SEM image and energy-dispersive X-ray spectroscopy image, Particle bubble generation mechanism[68]. Adapted from ref 68, Copyright 2014,Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim.(B) Metal Mg bubble based propelled motor particles:SEM image and energy-dispersive X-ray spectroscopy image, Schematic diagram of the DPP sensing process[69]. Adapted from ref 69, Copyright 2016,American Chemical Society
Fig. 6 Schematic diagram of electroluminescent particle for glucose sensing[73]. Adapted from ref 73, Copyright 2014, Royal Society of Chemistry
Fig. 7 (A) Au-WO3@C Janus micro motor particle structure:a) TEM image, b~d) Au,W,O Corresponding EDX mapped images and schematic of particle structure[75]. Adapted from ref 75, Copyright 2017, American Chemical Society.(B) PCL-Mg motor particles for precious metal sensing:a,b) Particle diagram and SEM image, c,d) EDX mapped images of C and Mg,Bubble generation mechanism[76].Adapted from ref 76, Copyright 2019, Springer Nature.(C) Polymer motor particle pH sensing process diagram[77].Adapted from ref 77, Copyright 2013,Wiley-VCH Verlag GmbH &CoKGaA, Weinheim
[1]
Nascimento C F, Santos P M, Pereira-Filho E R, Rocha F R P. Food Chem., 2017, 221: 1232.

doi: S0308-8146(16)31857-X pmid: 27979084
[2]
Daghrir R, Drogui P. Environ. Chem. Lett., 2013, 11(3): 209.

doi: 10.1007/s10311-013-0404-8
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452(7185): 301.

doi: 10.1038/nature06599
[4]
Suo L Z, Dong X Y, Gao X, Xu J F, Huang Z, Ye J, Lu X M, Zhao L S. Microchem. J., 2019, 149: 104039.
[5]
Dasbasi T, Sacmaci S, Ulgen A, Kartal S. Food Chem., 2015, 174: 591.

doi: 10.1016/j.foodchem.2014.11.049
[6]
Li M, Liu Z J, Wang S W, Calatayud D G, Zhu W H, James T D, Wang L D, Mao B Y, Xiao H N. Chem. Commun., 2018, 54(2): 184.

doi: 10.1039/C7CC08035B
[7]
Fang X W, Yang S P, Chingin K, Zhu L, Zhang X L, Zhou Z Q, Zhao Z F. Int. J. Environ. Res. Public Heal., 2016, 13(8): 814.
[8]
Aparicio I, Martín J, Santos J L, Malvar J L, Alonso E. J. Chromatogr. A, 2017, 1500: 43.

doi: S0021-9673(17)30544-7 pmid: 28416215
[9]
Chafer-Pericas C, Maquieira Á, Puchades R, Miralles J, Moreno A, Pastor-Navarro N, Espinos F. Anal. Chimica Acta, 2010, 662(2): 177.

doi: 10.1016/j.aca.2009.12.044
[10]
Tumini M, Nagel O G, Althaus R L. J. Dairy Res., 2015, 82(2): 248.

doi: 10.1017/S0022029915000138
[11]
Moats W A. J. Agric. Food Chem., 2000, 48(6): 2244.

doi: 10.1021/jf990649r
[12]
Tsikas D, Bohmer A, Mitschke A. Anal. Chem., 2010, 82(12): 5384.

doi: 10.1021/ac1008354
[13]
Kowalski P. J. Pharm. Biomed. Anal., 2008, 47(3): 487.

doi: 10.1016/j.jpba.2008.01.036 pmid: 18325708
[14]
Jin W, Maduraiveeran G. Trends Environ. Anal. Chem., 2017, 14: 28.

doi: 10.1016/j.teac.2017.05.001
[15]
Wang C, Yu C X. Rev. Anal. Chem, 2013, 32(1): 1.

doi: 10.1515/revac-2012-0023
[16]
Jackson J B, Halas N J. PNAS, 2004, 101(52): 17930.

pmid: 15608058
[17]
Liu G L, Lee L P. Appl. Phys. Lett., 2005, 87(7): 3.
[18]
Chen X Y, Ma R T, Ha W, Shi Y P. Sens. Actuat. B: Chem., 2018, 274: 668.

doi: 10.1016/j.snb.2018.08.008
[19]
Zhou W R, Sun W, Yang P H. Progress in Chemistry, 2018, 30(11): 1601.
(周婉蓉, 孙巍, 杨平辉. 化学进展, 2018, 30(11): 1601.)

doi: 10.7536/PC180316
[20]
Zhang L P. Shandong Chemical Industry, 2018, 47(08): 56.
(张立平. 山东化工, 2018, 47(08): 56.)
[21]
Le T C, Zhai J L, Chiu W H, Tran P A, Tran N. Int. J. Nanomed., 2019, 14: 6749.

doi: 10.2147/IJN
[22]
Dehghani E, Barzgari-Mazgar T, Salami-Kalajahi M, Kahaie-Khosrowshahi A. Mater. Chem. Phys., 2020, 249: 123000.
[23]
Li T, Wang Y L, Guo F F, Shi D L. Prog. Chem., 2013, 25(12): 2053.
(李恬, 王祎龙, 郭方方, 时东陆. 化学进展, 2013, 25(12): 2053.)
[24]
Shang B, Wang Y B, Peng B, Deng Z W. Appl. Surf. Sci., 2020, 509: 145360.
[25]
Chowdhury E, Grapperhaus C A, O’Toole M G. J. Nanoparticle Res., 2020, 22(6): 12.

doi: 10.1007/s11051-019-4729-5
[26]
Baran Ł, BorÓwko M, R?ysko W. J. Phys. Chem. C, 2020, 124(32): 17556.

doi: 10.1021/acs.jpcc.0c03214
[27]
Wang L, Liu Y J, He J, Hourwitz M J, Yang Y L, Fourkas J T, Han X J, Nie Z H. Small, 2015, 11(31): 3762.

doi: 10.1002/smll.201500527 pmid: 25925707
[28]
Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2012, 41(11): 4356.

doi: 10.1039/c2cs35032g
[29]
Walther A, Müller A H E. Chem. Rev., 2013, 113(7): 5194.

doi: 10.1021/cr300089t
[30]
Deng S M, Xing Y, Zhou Y. Journal of Shanxi University(Natural Science Edition)), 2017, 40(03): 577.
(双少敏, 邢洋, 周影. 山西大学学报(自然科学版), 2017, 40(03): 577.)
[31]
Wang Y H. Chem. Bioeng., 2012, 29(10): 14.
(王宇航. 化学与生物工程, 2012, 29(10): 14.)
[32]
Xue W, Wu J H, Du Z P. China Surfactant Detergent & Cosmetics, 2019, 49(09): 614.
(薛伟, 武江红, 杜志平. 日用化学工业, 2019, 49(09): 614.)
[33]
Chen Y H, Wang C Y, Li Y, Tong Z. Prog. Chem., 2009, 21(4): 615.(in Chinese)
(陈云华, 王朝阳, 李煜, 童真. 化学进展, 2009, 21(4): 615.)
[34]
Marschelke C, Fery A, Synytska A. Colloid Polym. Sci., 2020, 298(7): 841.

doi: 10.1007/s00396-020-04601-y
[35]
Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. ACS Appl. Mater. Interfaces, 2020, 12(31): 35120.

doi: 10.1021/acsami.0c11283
[36]
Zhou Y Y, Shen F, Zhang S D, Zhao Q Q, Xu Z, Chen H L. ACS Appl. Mater. Interfaces, 2020, 12(26): 29876.
[37]
He X, Liu Q X, Xu Z H. J. Colloid Interface Sci., 2020, 568: 207.

doi: 10.1016/j.jcis.2020.02.019
[38]
Yoon B, Lee S, Kim J M. Chem. Soc. Rev., 2009, 38(7): 1958.

doi: 10.1039/b819539k
[39]
Lee K, Povlich L K, Kim J. Anal., 2010, 135(9): 2179.

doi: 10.1039/c0an00239a
[40]
Sun X M, Chen T, Huang S Q, Li L, Peng H S. Chem. Soc. Rev., 2010, 39(11): 4244.

doi: 10.1039/c001151g
[41]
Lee J, Kim J. Chem. Mater., 2012, 24(14): 2817.

doi: 10.1021/cm3015012
[42]
Kang D H, Jung H S, Ahn N, Yang S M, Seo S, Suh K Y, Chang P S, Jeon N L, Kim J, Kim K. ACS Appl. Mater. Interfaces, 2014, 6(13): 10631.

doi: 10.1021/am502319m
[43]
Chang Z M, Wang Z, Shao D, Yue J, Lu M M, Li L, Ge M F, Yang D, Li M Q, Yan H Z, Xu Q B, Dong W F. Sens. Actuat. B: Chem., 2018, 260: 1004.

doi: 10.1016/j.snb.2018.01.123
[44]
Llopis-Lorente A, Villalonga R, Marcos M D, Martínez-Máñez R, SancenÓn F. Chem. Eur. J., 2019, 25(14): 3575.

doi: 10.1002/chem.v25.14
[45]
Xu J, Chen R J, Jia L, Shen X K, Zhao T Q, Su L, Guo S L, Ma T L, Zhang B B, Guo Q, Ge Z J, Zhu T F. Appl. Surf. Sci., 2019, 484: 1.

doi: 10.1016/j.apsusc.2019.04.101
[46]
Xiong Y M, Li M M, Liu H Q, Xuan Z H, Yang J, Liu D B. Nanoscale, 2017, 9(5): 1811.

doi: 10.1039/C6NR07879F
[47]
Liu D B, Wang Z T, Jin A, Huang X L, Sun X L, Wang F, Yan Q, Ge S X, Xia N S, Niu G, Liu G, Hight Walker A R, Chen X Y. Angew. Chem. Int. Ed., 2013, 52(52): 14065.

doi: 10.1002/anie.201307952
[48]
Zheng F J, Ke W, Shi L X, Liu H, Zhao Y. Anal. Chem., 2019, 91(18): 11812.

doi: 10.1021/acs.analchem.9b02469
[49]
Sánchez A, Díez P, Martínez-Ruíz P, Villalonga R, PingarrÓn J M. Electrochem. Commun., 2013, 30: 51.

doi: 10.1016/j.elecom.2013.02.008
[50]
Boujakhrout A, Sánchez E, Díez P, Sánchez A, Martínez-Ruiz P, Parrado C, PingarrÓn J M, Villalonga R. ChemElectroChem, 2015, 2(11): 1735.

doi: 10.1002/celc.201500244
[51]
Yang Y J, Zhou Y, Xing Y, Zhang G M, Zhang Y, Zhang C H, Lei P, Dong C, Deng X, He Y J, Shuang S M. Talanta, 2019, 199: 310.

doi: S0039-9140(19)30150-X pmid: 30952263
[52]
Wang D W, Li Z W, Zhou J, Fang H, He X, Jena P, Zeng J B, Wang W N. Nano Micro Lett., 2017, 10(1): 1.
[53]
Wang L, Hortelao A, Huang X, Sanchez S. Angew. Chem. Int. Ed., 2019, 58: 7992.

doi: 10.1002/anie.v58.24
[54]
Zhang Q L, Dong R F, Chang X Y, Ren B Y, Tong Z. ACS Appl. Mater. Interfaces, 2015, 7(44): 24585.

doi: 10.1021/acsami.5b06448
[55]
Wang L, MarcielloM, Gay M, Rodriguez P, Morato Y, Huang X, Osuna S, Sanchez S. Angew. Chem. Int. Ed., 2020,DOI: 10.1002/anie.202008339.

doi: 10.1002/anie.202008339
[56]
Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52(28): 7208.

doi: 10.1002/anie.201300913
[57]
Gao W, Feng X M, Pei A, Gu Y, Li J X, Wang J. Nanoscale, 2013, 5(11): 4696.

doi: 10.1039/c3nr01458d
[58]
Gao W, Pei A, Wang J. ACS Nano, 2012, 6(9): 8432.

doi: 10.1021/nn303309z
[59]
Li J, Ji F, Ng D H L, Liu J, Bing X M, Wang P. Chem. Eng. J., 2019, 369: 611.

doi: 10.1016/j.cej.2019.03.101
[60]
Guix M, Meyer A K, Koch B, Schmidt O G. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[61]
Schattling P, Thingholm B, Stadler B. Chem. Mater., 2015, 27(21): 7412.

doi: 10.1021/acs.chemmater.5b03303
[62]
Ge Y, Liu M, Liu L M, Sun Y Y, Zhang H, Dong B. Nano Micro Lett., 2016, 8(2): 157.

doi: 10.1007/s40820-015-0071-3
[63]
Gao W, D'Agostino M, Garcia-Gradilla V, Orozco J, Wang J. Small, 2013, 9(3): 467.

doi: 10.1002/smll.201201864
[64]
Singh V V, Kaufmann K, Orozco J, Li J X, Galarnyk M, Arya G, Wang J. Chem. Commun., 2015, 51(56): 11190.

doi: 10.1039/C5CC04120A
[65]
Jurado-Sanchez B, Pacheco M, Rojo J, Escarpa A. Angew. Chem. Int. Ed., 2017, 56(24): 6957.

doi: 10.1002/anie.201701396
[66]
Pacheco M, Jurado-Sanchez B, Escarpa A. Anal. Chem., 2018, 90(4): 2912.

doi: 10.1021/acs.analchem.7b05209 pmid: 29376315
[67]
Yuan Y, Gao C Y, Wang D L, Zhou C, Zhu B H, He Q. Beilstein J. Nanotechnol., 2019, 10: 1324.

doi: 10.3762/bjnano.10.131
[68]
Jurado-Sanchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh V V, Orozco J, Galarnyk M, Wang J. Small, 2015, 11(4): 499.

doi: 10.1002/smll.201402215 pmid: 25207503
[69]
Rojas D, Jurado-Sanchez B, Escarpa A. Anal. Chem., 2016, 88(7): 4153.

doi: 10.1021/acs.analchem.6b00574 pmid: 26938969
[70]
Cinti S, Valdes-Ramirez G, Gao W, Li J X, Palleschi G, Wang J. Chem. Commun., 2015, 51(41): 8668.

doi: 10.1039/C5CC02222C
[71]
Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. Angew. Chem. Int. Ed., 2012, 51(45): 11284.

doi: 10.1002/anie.201206227
[72]
Bouffier L, Zigah D, Adam C, Sentic M, Fattah Z, Manojlovic D, Kuhn A, Sojic N. ChemElectroChem, 2014, 1(1): 95.

doi: 10.1002/celc.201300042
[73]
Sentic M, Arbault S, Goudeau B, Manojlovic D, Kuhn A, Bouffier L, Sojic N. Chem. Commun., 2014, 50(71): 10202.

doi: 10.1039/C4CC04105D
[74]
Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131(34): 12082.

doi: 10.1021/ja905142q
[75]
Zhang Q L, Dong R F, Wu Y F, Gao W, He Z H, Ren B Y. ACS Appl. Mater. Interfaces, 2017, 9(5): 4674.

doi: 10.1021/acsami.6b12081
[76]
Zhang D M, Wang D, Li J A, Xu X Y, Zhang H, Duan R M, Song B, Zhang D F, Dong B. J. Mater. Sci., 2019, 54(9): 7322.

doi: 10.1007/s10853-019-03390-2
[77]
Dey K K, Bhandari S, Bandyopadhyay D, Basu S, Chattopadhyay A. Small, 2013, 9(11): 1916.

doi: 10.1002/smll.v9.11
[78]
Dong R F, Li J X, Rozen I, Ezhilan B, Xu T L, Christianson C, Gao W, Saintillan D, Ren B Y, Wang J. Sci. Rep., 2015, 5(1): 1.
[79]
Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-LÓpez A, Schäffer E, Sánchez S. Nano Lett., 2015, 15(10): 7043.

doi: 10.1021/acs.nanolett.5b03100
[80]
Liu C H, Huang J R, Song Y C, Xu T L, Zhang X J. Scientia Sinica(Chimica), 2017, 47(01): 29.
(刘聪慧, 黄金荣, 宋永超, 许太林, 张学记. 中国科学:化学, 2017, 47(01): 29.)
[81]
Wang L, Song S D, Hest J, Abdelmohsen L K E A, Huang X, Sanchez S. Small, 2020, 16(27): 1907680.
[82]
Su P F, Wu H X, Chen Y M, Peng F. Prog. Chem., 2019, 31(1): 63.
(苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 化学进展, 2019, 31(1): 63.)

doi: 10.7536/PC180407
[83]
Maric T, Nasir M Z M, Rosli N F, Budanovic M, Webster R D, Cho N J, Pumera M. Adv. Funct. Mater., 2020, 30(19): 2000112.
[84]
Lin X Y, Zhu H, Zhao Z, You C Y, Kong Y, Zhao Y T, Liu J R, Chen H, Shi X J, Makarov D, Mei Y F. Adv. Mater. Technol., 2020, 5(8): 2000279.
[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[3] Jiajia Wang, Huiying Wu, Renfeng Dong, Yuepeng Cai. Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy [J]. Progress in Chemistry, 2021, 33(5): 883-894.
[4] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[5] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.
[6] Wanrong Zhou, Wei Sun*, Pinghui Yang. Preparation and Functional Application of Janus Particles [J]. Progress in Chemistry, 2018, 30(11): 1601-1614.
[7] Yu Xiaoping, Wu Jie, Ju Huangxian. The Application of Micro/Nanomotor in Biosensing [J]. Progress in Chemistry, 2014, 26(10): 1712-1719.
[8] Yang Zhenglong, Xu Xiaoli, Zhao Yuxin. Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2014, 26(06): 996-1004.
[9] Guo Feng, Zhu Guiru, Gao Congjie. Organic-Inorganic Hybrid Mesoporous Silicas and Their Applications in Environmental Protection [J]. Progress in Chemistry, 2011, 23(6): 1237-1250.
[10] Yi Chenglin, Yang Yiqun, Jiang Jinqiang, Liu Xiaoya, Jiang Ming. Research and Application of Particle Emulsifiers [J]. Progress in Chemistry, 2011, 23(01): 65-79.
[11] Chen Yunhua, Wang Chaoyang**, Li Yu, Tong Zhen. Synthesis of Janus Particles [J]. Progress in Chemistry, 2009, 21(04): 615-621.