中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 63-69 DOI: 10.7536/PC180407 Previous Articles   Next Articles

• Review •

Micro/Nanomotors as Drug Delivery Agent

Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng*()   

  1. School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: Fei Peng
  • About author:
    ** Corresponding author e-mail:
    † These authors contributed equally to this work
  • Supported by:
    This work was supported by the Sun Yat-sen University Hundred Talents Plan(29000-18831106); The Guangdong Innovative and Entrepreneurial Research Team Program(2013S086)
Richhtml ( 28 ) PDF ( 1821 ) Cited
Export

EndNote

Ris

BibTeX

Inspired by the highly efficient biological motors in nature, researchers proposed the concept of micro/nanomotors, or micro/nanoscale autonomously moving devices. Combining the technology of chemistry, physics and multidisciplines, various micro/nanomotors of different structures, motion mechanisms and control methods are fabricated. These micro/nanomotors demonstrate great promises in multiple fields including sensing, environment remediation, biomedicine, etc. One of the most important applications in biomedicine is drug delivery. The micro/nanomotors can achieve efficient drug delivery, shedding new light for conventional cancer therapy. In this review, we focus on micro/nanomotors for drug delivery and introduce their structures, mechanisms and control methods. The motion mechanisms(self field mechanism and external field mechanism) of micro/nanomotors will be covered. Motor structures(polymer vesicle, tube and nanowire) suitable for drug delivery will be introduced. For efficient targeted drug delivery, motion control is very important. The on-off control, direction control and velocity control will be discussed. Current bottlenecks are also summarized and possible future direction of the field is discussed.

Fig.1 The motion mechanism of micro/nanomotors
Fig.2 (a)Schematic representation of a light-guided nanomotor system using PEG44-b-PS141/naphthalocyanine(NC) and Pt nanoparticles(Pt-NPs)[9]. Copyright 2018, American Chemical Society; (b) Schematic representation of the assembly of the nanomotor with multiple enzymes entrapped inside the structure[30]. Copyright 2016, American Chemical Society; (c) Schematic of different nanotubes’ trajectories[31]. Copyright 2012, American Chemical Society; (d) Nanowire motors based on nanoporous gold segment[32]. Copyright 2014, John Wiley and Sons
Fig.3 (a)The drug delivery of Ag/Ni nanomotors towards cancer cells under magnetic field[36]. Copyright 2012, John Wiley and Sons; (b)The direction control of Ni/Al/EGaIn motor with an electrical field[7]. Copyright 2016, Royal Society of Chemistry
[1]
Orozco J, Garcia-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J . ACS Nano, 2013,7:818.
[2]
Zhang W . J. Nanopart. Res., 2003,5:323.
[3]
Ariga K, Ishihara S, Abe H, Li M, Hill J P . J. Mater. Chem., 2012,22:2369.
[4]
Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, Shen Y, Wang J . J. Am. Chem. Soc., 2013,135:5336.
[5]
Liu C, Huang J, Song Y, Xu T, Zhang X . Sci. Sin. Chim., 2017,47:29.
[6]
Wilson D A, Nolte R J M, van Hest J C M . Nat. Chem., 2012,4:268.
[7]
Zhang J, Guo R, Liu J . J. Mater. Chem. B, 2016,4:5349.
[8]
Wu Z, Wu Y, He W, Lin X, Sun J, He Q . Angew. Chem. Int. Ed., 2013,52:7000.
[9]
Choi H, Lee G, Kim K S, Hahn S K . ACS Appl.Mater.Interfaces, 2018,10:2338.
[10]
Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J . J. Am. Chem. Soc., 2012,134:15217.
[11]
Li Y, Mou F Z, Chen C R, You M, Yin Y X, Xu L L, Guan J G . RSC Adv., 2016,6:10697.
[12]
Wu Z G, Li J X, de Avila B E, Li T, Gao W, He Q, Zhang L, Wang J . Adv. Funct. Mater., 2015,25:7497.
[13]
Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A . Angew. Chem. Int. Ed., 2011,50:9374.
[14]
Wang W, Duan W T, Sen A, Mallouk T E . Proc. Natl. Acad. Sci. U. S.A., 2013,110:17744.
[15]
Zhao G J, Pumera M . Chem. Asia. J., 2012,7:1994.
[16]
Bassik N, Abebe B T, Gracias D H . Langmuir, 2008,24:12158.
[17]
Sharma R, Chang S T, Velev O D . Langmuir, 2012,28:10128.
[18]
Toyota T, Maru N, Hanczyc M M, Ikegami T, Sugawara T . J. Am. Chem. Soc., 2009,131:5012.
[19]
Wu Z G, Si T Y, Gao W, Lin X K, Wang J, He Q . Small, 2016,12:577.
[20]
Dong R, Zhang Q, Gao W, Pei A, Ren B . ACS Nano, 2016,10:839.
[21]
Yoshizumi Y, Honegger T, Berton K, Suzuki H, Peyrade D . Small, 2015,11:5630.
[22]
Wu Y J, Lin X K, Wu Z G, Möhwald H, He Q. . ACS Appl Mater.Interfaces, 2014,6:10476.
[23]
Zhao G J, Pumera M . Langmuir, 2013,29:7411.
[24]
Xu T L, Soto F, Gao W, Garcia-Gradilla V, Li J X, Zhang X J, Wang J . J. Am. Chem. Soc., 2014,136:8552.
[25]
Wang W, Duan W T, Zhang Z X, Sun M, Sen A, Mallouk T E . Chem. Commun., 2015,51:1020.
[26]
Xiong D A, An Y L, Li Z, Ma R J, Liu Y, Wu C L, Zou L, Shi L Q, Zhang J H . Macromol. Rapid. Commun., 2008,29:1895.
[27]
Peng F, Tu Y, van Hest J C M, Wilson D A . Angew. Chem., 2015,127:11828.
[28]
Tu Y, Peng F, Andre A A M, Men Y, Srinivas M, Wilson D A . ACS Nano, 2017,11:1957.
[29]
Hocine S, Cui D, Rager M N, Di Cicco A, Liu J M, Bakala J W, Brûlet A, Li M H . Langmuir, 2013,29:1356.
[30]
Abdelmohsen L K E A, Nijemeisland M, Pawar G M, Janssen G A, Nolte R J M, van Hest J C M, Wilson D A . ACS Nano, 2016,10:2652.
[31]
Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt O G . ACS Nano, 2012,6:1751.
[32]
Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, Wiitala D, Galarnyk M, Wang J . Small, 2014,10:4154.
[33]
Ahmed S, Wang W, Mair L O, Fraleigh R D, Li S, Castro L A, Hoyos M, Huang T J, Mallouk T E . Langmuir, 2013,29:16113.
[34]
Sundararajan S, Lammert P E, Zudans A W, Crespi V H, Sen A . Nano Lett., 2008,8:1271.
[35]
Chen C, Mou F, Xu L, Wang S, Guan J, Feng Z, Wang Q, Kong L, Li W, Wang J, Zhang Q . Adv.Mater, 2017,29:1603374.
[36]
Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton E E, Zhang L, Lauga E, Wang J . Small, 2012,8:460.
[37]
Balasubramanian S, Kagan D, Manesh K M, Calvo-Marzal P, Flechsig G U, Wang J . Small, 2009,5:1569.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[6] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[7] Jiajia Wang, Huiying Wu, Renfeng Dong, Yuepeng Cai. Micro/Nanomotors on the Way to Intelligent Cancer Diagnosis, Delivery and Therapy [J]. Progress in Chemistry, 2021, 33(5): 883-894.
[8] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[9] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[10] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[11] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[12] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[13] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[14] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[15] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
Viewed
Full text


Abstract

Micro/Nanomotors as Drug Delivery Agent