Progress in Chemistry 2021, Vol. 33 Issue (12): 2309-2315 DOI: 10.7536/PC201129 Previous Articles   Next Articles

• Review •

Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors

Shuang Yang1,2, Xianpeng Yang2, Baojun Wang3,4,5, Lei Wang2()   

  1. 1 College of Environmental and Resource Sciences, Zhejiang University,Hangzhou 310058, China
    2 Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou 310024, China
    3 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
    4 Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
    5 School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
  • Received: Revised: Online: Published:
  • Contact: Lei Wang
  • Supported by:
    the Institutional Fund from the Westlake University(103256021901)
Richhtml ( 20 ) PDF ( 418 ) Cited




In recent years, paper-based biosensors have attracted increasing attention due to their low cost, ease of operation and disposal, biodegradability and low consumption of analytes. Among them, the paper-based fluorescent biosensors with functional nucleic acids as the recognition elements are of particular attraction. Their high sensitivity, instant response and real-time detection capabilities endow them with great potentials for applications in portable sensor devices. In addition, the paper-based cell-free protein synthesis platform, using nucleic acid as the recognition elements, can achieve specific detection of viruses, heavy metals and other targets by expressing the fluorescent proteins as the output reporter, which has good application prospects. Here we introduce the design of these fluorogenic nucleic acid-based paper biosensors, focusing on the integration methods of nucleic acid-based recognition elements and paper-based substrates. We also discuss the latest progress of their applications in different fields including clinical diagnosis, food contaminant detection and environmental pollutant detection as well as their advantages and limitations. Finally, the prospects and development directions of fluorogenic nucleic acid-based paper biosensors are presented, providing reference for research in related fields.


1 Introduction

2 Design

2.1 Physical adsorption

2.2 Covalent coupling

2.3 Entrapment immobilization

3 Applications

3.1 Clinical diagnosis

3.2 Food safety detection

3.3 Environmental pollutant detection

4 Conclusions and outlook

Fig.1 Approaches of integrating paper-based materials with nucleic acid-based recognition elements: (a) Physical adsorption, (b) Covalent coupling, (c) Gel entrapment, (d) Freeze-drying entrapment
Fig.2 Workflow for the analysis of microbiome samples using the toehold switch paper-based detection platform[61]
Fig.3 (a) Schematic illustration of the turn-on sensor based on MWCNT and 6-FAM functionalized aptamer; (b) Schematic showing the design of the paper-based microfluidic device for norovirus detection using norovirus aptamer functionalized MWCNT; (c) The picture of the paper-based microfluidic device[53]
Fig.4 Schematic showing the paper-based aptasensor combined with the FRET process for Pb2+ detection[71]
Liana D D, Raguse B, Gooding J J, Chow E. Sensors, 2012, 12(9): 11505.

doi: 10.3390/s120911505 pmid: 23112667
Zhang D H, Broyles D, Hunt E A, Dikici E, Daunert S, Deo S K. Anal., 2017, 142(5): 815.

doi: 10.1039/C6AN02452A
Cinti S, Moscone D, Arduini F. Nat. Protoc., 2019, 14(8): 2437.

doi: 10.1038/s41596-019-0186-y
Wan X Y, Volpetti F, Petrova E, French C, Maerkl S J, Wang B J. Nat. Chem. Biol., 2019, 15(5): 540.

doi: 10.1038/s41589-019-0244-3
Peeling R W, Mabey D. Clin. Microbiol. Infect., 2010, 16(8): 1062.

doi: 10.1111/j.1469-0691.2010.03279.x
Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1): 3.

doi: 10.1021/ac9013989 pmid: 20000334
Ge S G, Zhang L N, Yu J H. Bioanalysis, 2015, 7(6): 633.

doi: 10.4155/bio.15.3
Zhao W, Van D B A. Lab. Chip., 2008, 8(12): 1988.

doi: 10.1039/b814043j
Hui C Y, Liu M, Li Y F, Brennan J D. Angew. Chem. Int. Ed., 2018, 57(17): 4549.

doi: 10.1002/anie.v57.17
Burstein J, Braunstein G D. Early pregnancy, 1995, 1(4): 288.
Chard T. Hum. Reprod., 1992, 7(5): 701.

pmid: 1639991
Comer J P. Anal. Chem., 1956, 28(11): 1748.

doi: 10.1021/ac60119a030
Liu X F, Wang L H, Song S P, Fan C H, Huang W. Prog. Chem., 2008, 20(9): 1375.
( 刘兴奋, 王丽华, 宋世平, 樊春海, 黄维. 化学进展, 2008, 20(9): 1375.)
Kong F Z, Hu Y F. Anal. Bioanal. Chem., 2012, 403(1): 7.

doi: 10.1007/s00216-012-5821-1
Liu R D, McConnell E M, Li J X, Li Y F. J. Mater. Chem. B, 2020, 8(16): 3213.

doi: 10.1039/C9TB02584G
Du Z H, Li X Y, Tian J J, Zhang Y Z, Tian H T, Xu W T. Chinese Journal of Analytical Chemistry, 2018, 46(7): 11.
( 杜再慧, 李相阳, 田晶晶, 张洋子, 田洪涛, 许文涛. 分析化学, 2018, 46(7): 11.)
Zhu L, Ling J J, Zhu Z, Tian T, Song Y L, Yang C Y. Anal. Bioanal. Chem., 2021, 413(18): 4563.

doi: 10.1007/s00216-020-03124-3 pmid: 33506341
Liu Y, Guo X C, Geng J H, Jiao Y, Han J P, Zhang Z K, Zhou X, Yang D Y. Chinese Science Bulletin, 2017, 62(33): 61.
( 刘阳, 郭小翠, 耿金慧, 焦毅, 韩金鹏, 张志昆, 周晓, 仰大勇. 科学通报, 2017, 62(33): 61.)
Whitfield C J, Banks A M, Dura G, Love J, Fieldsend J E, Goodchild S A, Fulton D A, Howard T P. Chem. Commun., 2020, 56(52): 7108.

doi: 10.1039/D0CC02582H
Ma D, Shen L, Wu K, Diehnelt C W, Green A A. Synth. Biol., 2018, 3(1): 1.
Gräwe A, Dreyer A, Vornholt T, Barteczko U, Buchholz L, Drews G, Ho U L, Jackowski M E, Kracht M, Lüders J, Bleckwehl T, Rositzka L, Ruwe M, Wittchen M, Lutter P, Müller K, Kalinowski J. PLoS One, 2019, 14(3): e0210940. DOI: 10.1371/journal.pone.0210940.

doi: 10.1371/journal.pone.0210940
Lopreside A, Wan X Y, Michelini E, Roda A, Wang B J. Anal. Chem., 2019, 91(23): 15284.

doi: 10.1021/acs.analchem.9b04444 pmid: 31690077
del Valle I, Fulk E M, Kalvapalle P, Silberg J J, Masiello C A, Stadler L B. Front. Microbiol., 2021, 11: 618373. DOI: 10.3389/fmicb.2020.618373.

doi: 10.3389/fmicb.2020.618373
Amrita S, Darlin L, Akhil M, Shainlee T, Manjot P, Gulden C U. Sensors, 2018, 18(9): 2838.

doi: 10.3390/s18092838
Gaviria-Arroyave M I, Cano J B, Peñuela G A. Talanta Open, 2020, 2: 100006.

doi: 10.1016/j.talo.2020.100006
Voyvodic P L, Bonnet J. Curr. Opin. Biomed. Eng., 2020, 13: 9.
Zhang L Y, Guo W, Lu Y. Biotechnol. J., 2020, 15(9): 2070091.

doi: 10.1002/biot.v15.9
Credou J, Berthelot T. J. Mater. Chem. B, 2014, 2(30): 4767.

doi: 10.1039/c4tb00431k pmid: 32261769
Pelton R. Trac Trends Anal. Chem., 2009, 28(8): 925.

doi: 10.1016/j.trac.2009.05.005
Su S X, Nutiu R, Filipe C D M, Li Y F, Pelton R. Langmuir, 2007, 23(3): 1300.

doi: 10.1021/la060961c
Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J. Biomacromolecules, 2012, 13(3): 736.

doi: 10.1021/bm201661k pmid: 22257019
Liu X J, Li X Y, Gao X, Ge L, Sun X Z, Li F. ACS Appl. Mater. Interfaces, 2019, 11(17): 15381.

doi: 10.1021/acsami.9b03860
Orelma H, Filpponen I, Johansson L S, Österberg M, Rojas O J, Laine J. Biointerphases, 2012, 7(1): 61.

doi: 10.1007/s13758-012-0061-7
Berlin P, Klemm D, Jung A, Liebegott H, Rieseler R, Tiller J. Cellulose, 2003, 10(4): 343.

doi: 10.1023/A:1027342027945
Su S X, Ali M M, Filipe C D M, Li Y F, Pelton R. Biomacromolecules, 2008, 9(3): 935.

doi: 10.1021/bm7013608
Pardee K, Green A A, Ferrante T, Cameron D E, DaleyKeyser A, Yin P, Collins J J. Cell, 2014, 159(4): 940.

doi: 10.1016/j.cell.2014.10.004 pmid: 25417167
Bracher P J, Gupta M, Mack E T, Whitesides G M. ACS Appl. Mater. Interfaces, 2009, 1(8): 1807.

doi: 10.1021/am900340m
Karig D K, Bessling S, Thielen P, Zhang S, Wolfe J. J. R. Soc. Interface., 2017, 14(129): 20161039.

doi: 10.1098/rsif.2016.1039
Li X, Tian J F, Shen W. Anal. Bioanal. Chem., 2010, 396(1): 495.

doi: 10.1007/s00216-009-3195-9
Martinez A W, Phillips S T, Whitesides G M. PNAS, 2008, 105(50): 19606.

doi: 10.1073/pnas.0810903105 pmid: 19064929
Mohidus S K G T, Wei S, Gordon W, Garnier G. Anal. Chem., 2010, 82(10): 4158.

doi: 10.1021/ac100341n pmid: 20415489
Glavan A C, Niu J, Chen Z, Güder F, Cheng C M, Liu D, Whitesides G M. Anal. Chem., 2016, 88(1): 725.

doi: 10.1021/acs.analchem.5b02822 pmid: 26607489
Magro L, Jacquelin B, Escadafal C, Garneret P, Kwasiborski A, Manuguerra J C, Monti F, Sakuntabhai A, Vanhomwegen J, Lafaye P, Tabeling P. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
Ali M M, Slepenkin A, Peterson E, Zhao W A. ChemBioChem, 2019, 20(7): 906.

doi: 10.1002/cbic.v20.7
Wang L, Chen W, Xu D, Shim B S, Kotov N A. Nano Lett., 2009, 9 (12): 4147.

doi: 10.1021/nl902368r
Kumar S, Nehra M, Mehta J, Dilbaghi N, Marrazza G, Kaushik A. Sensors, 2019, 19(20): 4476.

doi: 10.3390/s19204476
Justino C, Duarte A, Rocha-Santos T. Sensors, 2017, 17(12): 2918.

doi: 10.3390/s17122918
Meredith N A, Quinn C, Cate D M, Reilly T H, Volckens J, Henry C S. Anal., 2016, 141(6): 1874.

doi: 10.1039/C5AN02572A
Hossain S M Z, Luckham R E, McFadden M J, Brennan J D. Anal. Chem., 2009, 81(21): 9055.

doi: 10.1021/ac901714h pmid: 19788278
Zhu C, Zhang G L, Huang Y F, Yang S M, Ren S Y, Gao Z X, Chen A L. J. Hazard. Mater., 2018, 344: 249.

doi: 10.1016/j.jhazmat.2017.10.026
Ali M M, Brown C L, Jahanshahi-Anbuhi S, Kannan B, Li Y F, Filipe C D M, Brennan J D. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x
Zhang Y, Zuo P, Ye B C. Biosens. Bioelectron., 2015, 68: 14.

doi: S0956-5663(14)00994-4 pmid: 25558869
Weng X, Neethirajan S. Microchimica Acta, 2017, 184(11): 4545.

doi: 10.1007/s00604-017-2467-x
Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2003, 21(10): 1192.

pmid: 14520405
Frew J E, Hill H A O. Anal. Chem., 1987, 59(15): 933A.

doi: 10.1021/ac00142a720
Wei H, Wu F, Yu P, Mao L Q. Chinese Journal of Analytical Chemistry, 2019, (10): 1466.
( 魏欢, 吴菲, 于萍, 毛兰群. 分析化学, 2019, (10): 1466.)
Wan K, Tao Z H, Xu L, Liu Y Q. Chinese Journal of Analytical Chemistry, 2014, 42(2): 298.

doi: 10.1016/S1872-2040(13)60712-4
( 王昆, 陶占辉, 徐蕾, 刘亚青. 分析化学, 2014, 42(2): 298.)
Ali M M, Aguirre S D, Xu Y Q, Filipe C D M, Pelton R, Li Y F. Chem. Commun., 2009(43): 6640.
Parolo C, Merkoçi A. Chem. Soc. Rev., 2013, 42(2): 450.

doi: 10.1039/C2CS35255A
Ratajczak K, Stobiecka M. Carbohydr. Polym., 2020, 229: 115463.

doi: 10.1016/j.carbpol.2019.115463
Takahashi M K, Xiao T, Dy A J, Dana B, Akana R T, Yoshikazu F, Nina D, Ashwin A, Collins J J. Nat. Commun., 2018, 9(1): 3347.

doi: 10.1038/s41467-018-05864-4 pmid: 30131493
Suresh N, Rahin A S, Rohit C, John B, Éva N. Nanotheranostics, 2017, 1(3): 272.
Huo B Y, Hu Y L, Gao Z X, Li G K. Talanta, 2021, 222: 121565.

doi: 10.1016/j.talanta.2020.121565
Xu H B, Ye Q. Journal of Food Safety & Quality, 2018, 9
( 17:113.(徐红斌, 叶青. 食品安全质量检测学报, 2018, 9(17):113.)
Kelishadi R. J. Environ. Health, 2012, 2012: 341637.
Liu Y, Wu Y H, Pang H W, Wang X X, Yu S J, Wang X K. Progress in Chemistry, 2019, (6): 831.
( 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 化学进展, 2019, (6): 831.)

doi: 10.7536/PC181018
Aljamali N, Kadhium A, Ghafil R, Jawd D S. Int. J. Prevent. Control. Ind. Pollut., 2020, 2(6): 34.
Jung J K, Alam K K, Verosloff M S, Capdevila D A, Desmau M, Clauer P R, Lee J W, Nguyen P Q, Pastén P A, Matiasek S J, Gaillard J F, Giedroc D P, Collins J J, Lucks J B. Nat. Biotechnol., 2020, 38 (12), 1451.

doi: 10.1038/s41587-020-0571-7
McConnell E M, Nguyen J, Li Y F. Front. Chem., 2020, 8: 434. DOI: 10.3389/fchem.2020.00434.

doi: 10.3389/fchem.2020.00434 pmid: 32548090
Muhammad-Aree S, Teepoo S. Anal. Bioanal. Chem., 2020, 412(6): 1395.

doi: 10.1007/s00216-019-02369-x pmid: 31919608
Khoshbin Z, Housaindokht M R, Izadyar M, Verdian A, Bozorgmehr M R. Anal. Chimica Acta, 2019, 1071: 70.

doi: 10.1016/j.aca.2019.04.049
Hicks M, Bachmann T T, Wang B J. ChemPhysChem, 2020, 21(2): 131.

doi: 10.1002/cphc.v21.2
Gao M H, Li J, Bao Z X, Hu M D, Nian R, Feng D X, An D, Li X, Xian M, Zhang H B. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[1] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[2] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[3] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[4] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[5] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[6] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[7] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[8] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[9] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[10] Yu Xiaoping, Wu Jie, Ju Huangxian. The Application of Micro/Nanomotor in Biosensing [J]. Progress in Chemistry, 2014, 26(10): 1712-1719.
[11] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.
[12] Zhao Chuanqi, Qu Xiaogang*. Recent Progress on Molecular Recognition and Modulation of Nucleic Acids Using Chiral Rare-Earth Complexes [J]. Progress in Chemistry, 2013, 25(04): 539-544.
[13] Tu Wenwen, Lei Jianping, Ju Huangxian. Nanoassembly and Biosensing of Porphyrins [J]. Progress in Chemistry, 2011, 23(10): 2113-2118.
[14] Zhang Tao, Chen Fan, Gai Qingqing, Qu Feng, Zhang Yukui. Ionic Liquids and Protein/Nucleic Acid Interaction [J]. Progress in Chemistry, 2011, 23(10): 2132-2139.
[15] Ma Zhanfang Si Guoli Chu Yiming Chen Ying. Advances on Triangular Silver Nanoprisms [J]. Progress in Chemistry, 2009, 21(09): 1847-1856.