中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 36-46 DOI: 10.7536/PC161214 Previous Articles   Next Articles

• Review •

DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection

Dekai Ye, Xiaolei Zuo*, Chunhai Fan*   

  1. Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21422508).
PDF ( 967 ) Cited
Export

EndNote

Ris

BibTeX

The biosensing technology plays an important role in environmental monitoring, safety control and medical diagnosis. Precise control of the interaction between bio-recognition probe and the interface is critical to improve the sensitivity, specificity and selectivity of biosensors. In a typical bioprobe immobilization, the heterogeneity of self-assembled monolayers on the surface increases the binding energy barrier and decreases the recognition efficiency and rate. We found that DNA nanostructures, such as tetrahedral DNA nanostructures (TDNs), could increase the homogeneity of self-assembled monolayers via enthalpy-entropy compensation, which enables precise regulation of interfacial property at the nanoscale. By regulating the intermolecular distance of bioprobes, the hybridization efficiency and hybridization rate of DNA probes can be improved significantly. The detection limit of DNA and microRNA can be pushed down to 10 aM limit. The detection limit of antigen detection can be improved to 100 pM and the detection limit of small molecule (cocaine) can be pushed to 33 nM. By using TDNs, we developed a universal detection platform for nucleic acids, proteins, small molecules and cells with superior detection sensitivity. To further use TDN probes in cells and in vivo, we explored the transport pathways of TDNs into the cell and directed their targeting location to specific organelles. We aim to develop DNA nanostructure-based bioprobes for intracellular and in-vivo imaging.

Contents
1 Introduction
2 Physicochemical perspectives on DNA immobilization: enthalpy-entropy compensation
3 DNA hybridization regime on DNA nanostructured biosensing interface
4 Biosensors with designed DNA nanostructures
4.1 Nucleic acids detection
4.2 Protein detection
4.3 Small molecules detection
4.4 In vivo detection
5 Conclusion and outlook

CLC Number: 

[1] Fan C, Plaxco K W, Heeger A J. Trends Biotechnol., 2005, 23:186.
[2] Kelley S O, Mirkin C A, Walt D R, Ismagilov R F, Toner M, Sargent E H. Nat. Nanotechnol., 2014, 9:969.
[3] Song S, Qin Y, He Y, Huang Q, Fan C, Chen H Y. Chem. Soc. Rev., 2010, 39:4234.
[4] Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem. Rev., 2015, 115:12491.
[5] Shen J W, Li Y B, Gu H S, Xia F, Zuo X L. Chem. Rev., 2014, 114:7631.
[6] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43:631.
[7] Fan C, Wang S, Hong J W, Bazan G C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:6297.
[8] Fan C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:9134.
[9] Fan C, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2002, 124:5642.
[10] Zuo X, He S, Li D, Peng C, Huang Q, Song S, Fan C. Langmuir, 2010, 26:1936.
[11] Fan C H, Li G X, Zhu D X. Chinese J. Chem., 2000, 18:115.
[12] Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. J. Am. Chem. Soc., 2012, 134:11876.
[13] Pei H, Li J, Lv M, Wang J, Gao J, Lu J, Li Y, Huang Q, Hu J, Fan C. J. Am. Chem. Soc., 2012, 134:13843.
[14] Peng T, Qin W, Wang K, Shi J, Fan C, Li D. Anal. Chem., 2015, 87:9403.
[15] Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Angew. Chem. Int. Ed., 2013, 52:11542.
[16] Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G. Angew. Chem. Int. Ed., 2014, 53:8338.
[17] Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48:8670.
[18] Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Angew. Chem. Int. Ed., 2015, 54:2431.
[19] Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C. Angew. Chem. Int. Ed., 2016, 55:8036.
[20] Zhang Y, Li Q, Guo L, Huang Q, Shi J, Yang Y, Liu D, Fan C. Angew. Chem. Int. Ed., 2016, 55:12450.
[21] Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, Fan C. Angew. Chem. Int. Ed., 2011, 50:11994.
[22] Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen J D, Hsu B B, Heeger A J, Plaxco K W. Proc. Natl. Acad. Sci. U.S.A., 2010, 107:10837.
[23] Deng W P, Dou Y Z, Song P, Xu H, Aldalbahi A, Chen N, El-Sayed N N, Gao J M, Lu J X, Song S P, Zuo X L. J. Electroanal. Chem., 2016, 777:117.
[24] Yang F, Zuo X, Li Z, Deng W, Shi J, Zhang G, Huang Q, Song S, Fan C. Adv. Mater., 2014, 26:4671.
[25] Kang D, Zuo X, Yang R, Xia F, Plaxco K W, White R J. Anal. Chem., 2009, 81:9109.
[26] Zhang H, Jia S, Lv M, Shi J, Zuo X, Su S, Wang L, Huang W, Fan C, Huang Q. Anal. Chem., 2014, 86:4047.
[27] Wang S P, Cai X Q, Wang L H, Li J, Li Q, Zuo X L, Shi J Y, Huang Q, Fan C H. Chem. Sci., 2016, 7:2722.
[28] Kang D, White R J, Xia F, Zuo X L, Vallee-Belisle A, Plaxco K W. NPG Asia Mater., 2012, 4:e1.
[29] Soleymani L, Fang Z C, Lam B, Bin X M, Vasilyeva E, Ross A J, Sargent E H, Kelley S O. ACS Nano, 2011, 5:3360.
[30] Bin X M, Sargent E H, Kelley S O. Anal. Chem., 2010, 82:5928.
[31] Lam B, Das J, Holmes R D, Live L, Sage A, Sargent E H, Kelley S O. Nat. Commun., 2013, 4:2001.
[32] Soleymani L, Fang Z C, Sargent E H, Kelley S O. Nat. Nanotechnol., 2009, 4:844.
[33] Zhu D, Chao J, Pei H, Zuo X, Huang Q, Wang L, Huang W, Fan C. ACS Appl. Mater. Inter., 2015, 7:11047.
[34] Zhu D, Pei H, Chao J, Su S, Aldalbahi A, Rahaman M, Wang L, Wang L, Huang W, Fan C, Zuo X. Nanoscale, 2015, 7:18671.
[35] Zhu D, Pei H, Yao G, Wang L, Su S, Chao J, Wang L, Aldalbahi A, Song S, Shi J, Hu J, Fan C, Zuo X. Adv. Mater., 2016, 28:6860.
[36] Zhu D, Song P, Shen J, Su S, Chao J, Aldalbahi A, Zhou Z, Song S, Fan C, Zuo X, Tian Y, Wang L, Pei H. Anal. Chem., 2016, 88:4949.
[37] Zhu D, Zuo X, Fan C. Sci. China-Chem., 2015, 45:1214.
[38] Lu N, Pei H, Ge Z, Simmons C R, Yan H, Fan C. J. Am. Chem. Soc., 2012, 134:13148.
[39] Chen X Q, Zhou G B, Song P, Wang J J, Gao J M, Lu J X, Fan C H, Zuo X L. Anal. Chem., 2014, 86:7337.
[40] Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew. Chem. Int. Ed., 2015, 54:2151.
[41] Vallee-Belisle A, Ricci F, Plaxco K W. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:13802.
[42] Xia F, White R J, Zuo X, Patterson A, Xiao Y, Kang D, Gong X, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2010, 132:14346.
[43] Xia F, Zuo X, Yang R, White R J, Xiao Y, Kang D, Gong X, Lubin A A, Vallee-Belisle A, Yuen J D, Hsu B Y, Plaxco K W. J. Am. Chem. Soc., 2010, 132:8557.
[44] Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. J. Am. Chem. Soc., 2007, 129:1042.
[45] Zuo X, Xiao Y, Plaxco K W. J. Am. Chem. Soc., 2009, 131:6944.
[46] Cash K J, Heeger A J, Plaxco K W, Xiao Y. Anal. Chem., 2009, 81:656.
[47] Hsieh K, White R J, Ferguson B S, Plaxco K W, Xiao Y, Soh H T. Angew. Chem. Int. Ed., 2011, 50:11176.
[48] Xiao Y, Lubin A A, Heeger A J, Plaxco K W. Angew. Chem. Int. Ed., 2005, 44:5456.
[49] Xiao Y, Uzawa T, White R J, Demartini D, Plaxco K W. Electroanalysis, 2009, 21:1267.
[50] Swensen J S, Xiao Y, Ferguson B S, Lubin A A, Lai R Y, Heeger A J, Plaxco K W, Soh H T. J. Am. Chem. Soc., 2009, 131:4262.
[51] Xiao Y, Lou X, Uzawa T, Plakos K J, Plaxco K W, Soh H T. J. Am. Chem. Soc., 2009, 131:15311.
[52] Xiao Y, Piorek B D, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2005, 127:17990.
[53] Xiao Y, Qu X, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2007, 129:11896.
[54] Xiao Y, Rowe A A, Plaxco K W. J. Am. Chem. Soc., 2007, 129:262.
[55] White R J, Phares N, Lubin A A, Xiao Y, Plaxco K W. Langmuir, 2008, 24:10513.
[56] Xiao Y, Lai R Y, Plaxco K W. Nat. Protoc., 2007, 2:2875.
[57] Zhu Y, Earnest T, Huang Q, Cai X, Wang Z, Wu Z, Fan C. Adv. Mater., 2014, 26:7889.
[58] Su S, Wu Y, Zhu D, Chao J, Liu X, Wan Y, Su Y, Zuo X, Fan C, Wang L. Small, 2016, 12:3794.
[59] Yao G, Li J, Chao J, Pei H, Liu H, Zhao Y, Shi J, Huang Q, Wang L, Huang W, Fan C. Angew. Chem. Int. Ed., 2015, 54:2966.
[60] Liu G, Sun C, Li D, Song S, Mao B, Fan C, Tian Z. Adv. Mater., 2010, 22:2148.
[61] Wang F, Fan C. Nat. Chem., 2016, 8:738.
[62] Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. Nature, 2009, 461:74.
[63] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310:1661.
[64] Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332:342.
[65] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C. ACS Nano, 2011, 5:8783.
[66] Li J, Fan C, Pei H, Shi J, Huang Q. Adv. Mater., 2013, 25:4386.
[67] Chen N, Li J, Song H, Chao J, Huang Q, Fan C. Acc. Chem. Res., 2014, 47:1720.
[68] Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. ACS Appl. Mater. Inter., 2016, 8:4378.
[69] Wei M, Chen N, Li J, Yin M, Liang L, He Y, Song H, Fan C, Huang Q. Angew. Chem. Int. Ed., 2012, 51:1202.
[70] Wei M, Li J, Chen N, Huang Q, Fan C. Chinese Sci. Bull., 2014, 59:133.
[71] Chen N, Wei M, Sun Y, Li F, Pei H, Li X, Su S, He Y, Wang L, Shi J, Fan C, Huang Q. Small, 2014, 10:368.
[72] Pei H, Zuo X, Zhu D, Huang Q, Fan C. Acc. Chem. Res., 2014, 47:550.
[73] Abi A, Lin M H, Pei H, Fan C H, Ferapontova E E, Zuo X L. ACS Appl. Mater. Inter., 2014, 6:8928.
[74] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22:4754.
[75] Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86:2124.
[76] Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal. Chem., 2014, 86:2285.
[77] Song P, Li M, Shen J, Pei H, Chao J, Su S, Aldalbahi A, Wang L, Shi J, Song S, Wang L, Fan C, Zuo X. Anal. Chem., 2016, 88:8043.
[78] Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. Anal. Chem., 2011, 83:7418.
[79] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51:9020.
[80] Pei H, Wan Y, Li J, Hu H, Su Y, Huang Q, Fan C. Chem. Commun., 2011, 47:6254.
[81] Wen Y, Liu G, Pei H, Li L, Xu Q, Liang W, Li Y, Xu L, Ren S, Fan C. Methods, 2013, 64:276.
[82] Pei H, Zuo X L, Pan D, Shi J Y, Huang Q, Fan C H. NPG Asia Mater., 2013, 5:e51.
[83] Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, Shen X, Li J, Fan C. Sci. Rep., 2012, 2:867.
[84] Bracha D, Karzbrun E, Shemer G, Pincus P A, Bar-Ziv R H. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:4534.
[85] Gong P, Levicky R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:5301.
[86] Guan J J, Lee J. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:18321.
[87] Opdahl A, Petrovykh D Y, Kimura-Suda H, Tarlov M J, Whitman L J. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:9.
[88] Lao R, Song S, Wu H, Wang L, Zhang Z, He L, Fan C. Anal. Chem., 2005, 77:6475.
[89] Zhang J, Lao R, Song S, Yan Z, Fan C. Anal. Chem., 2008, 80:9029.
[90] Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. J. Am. Chem. Soc., 2006, 128:8575.
[91] Campuzano S, Kuralay F, Lobo-Castanon M J, Bartosik M, Vyavahare K, Palecek E, Haake D A, Wang J. Biosens. Bioelectron., 2011, 26:3577.
[92] Liu G, Wan Y, Gau V, Zhang J, Wang L, Song S, Fan C. J. Am. Chem. Soc., 2008, 130:6820.
[93] Xiao Y, Lubin A A, Baker B R, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:16677.
[94] Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. ACS Appl. Mater. Inter., 2015, 7:8834.
[95] Li Z, Zhao B, Wang D, Wen Y, Liu G, Dong H, Song S, Fan C. ACS Appl. Mater. Inter., 2014, 6:17944.
[96] Wang D, Fu Y, Yan J, Zhao B, Dai B, Chao J, Liu H, He D, Zhang Y, Fan C, Song S. Anal. Chem., 2014, 86:1932.
[97] Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X. Anal. Chem., 2014, 86:7843.
[98] Ge Z, Fan C, Yan H. Chinese Sci. Bull., 2014, 59:146.
[99] Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Nat. Protoc., 2016, 11:1244.
[100] Chen S, Dou Y, Zhao Z, Li F, Su J, Fan C, Song S. Anal. Chem., 2016, 88:3476.
[101] Wen Y L, Wang L L, Xu L, Li L Y, Ren S Z, Cao C M, Jia N Q, Aldalbahi A, Song S P, Shi J Y, Xia J Y, Liu G, Zuo X L. The Analyst, 2016, 141:5304.
[102] Chao J, Zhu D, Zhang Y, Wang L, Fan C. Biosens. Bioelectron., 2016, 76:68.
[103] Li Y, Wen Y, Wang L, Liang W, Xu L, Ren S, Zou Z, Zuo X, Fan C, Huang Q, Liu G, Jia N. Biosens. Bioelectron., 2015, 67:364.
[104] Wan Y, Wang P, Su Y, Zhu X, Yang S, Lu J, Gao J, Fan C, Huang Q. Biosens. Bioelectron., 2014, 55:231.
[105] Wang P, Wan Y, Deng S, Yang S, Su Y, Fan C, Aldalbahi A, Zuo X. Biosens. Bioelectron., 2016, 86:536.
[106] Deng W, Xu B, Hu H, Li J, Hu W, Song S, Feng Z, Fan C. Sci. Rep., 2013, 3:1789.
[107] Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R. Nature, 2005, 435:834.
[108] Pritchard C C, Cheng H H, Tewari M. Nat. Rev. Genet., 2012, 13:358.
[109] Qin D, Xia Y N, Whitesides G M. Nat. Protoc., 2010, 5:491.
[110] Nam J M, Thaxton C S, Mirkin C A. Science, 2003, 301:1884.
[111] Shi J X, Zhang X E, Xie W H, Zhou Y F, Zhang Z P, Deng J Y, Cass A E G, Zhang Z L, Pang D W, Zhang C G. Anal. Chem., 2004, 76:632.
[112] Shao W H, Zhang X E, Liu H, Zhang Z P. Bioconjugate Chem., 2000, 11:822.
[113] Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Angew. Chem. Int. Ed., 2014, 53:7745.
[1] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[2] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[3] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[4] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[5] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[6] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[7] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[10] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[11] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[12] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[13] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[14] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[15] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.