中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 2019-2026 DOI: 10.7536/PC140722 Previous Articles   

• Review •

Properties and Applications of Janus Nanomaterials

Du Juan1, Lu Ying*1, Wang Yilong2, Guo Guiping3, Pan Yingjie1   

  1. 1. Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
    2. Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, China;
    3. Nantong Entry-Exit Inspection and Quarantine Bureau, Nantong 226000, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Key Project of Shanghai Agriculture Prosperity through Science and Technology (No. 2009-6-1), the Jiangsu Entry-Exit Inspection and Quarantine Bureau (No. 2013kj34), the Project of Science and Technology Commission of Shanghai Municipality (No. 11DZ2280300) and the Shanghai first-class discipline construction project (Food Science & Engineering)

PDF ( 1369 ) Cited
Export

EndNote

Ris

BibTeX

Asymmetric nanomaterials (Janus nanomaterials) comprising at least two components of different chemistry, functionality, and/or polarity have attracted great scientific interest in a wide range of applications. Additional properties are attributed to the asymmetric spatial distribution of functionalities on a single anisotropic nanoparticle, like amphiphilicity or new catalytic characteristic. In addition, Janus nanomaterials' synergistic potential for multilevel targeting, and combination therapies make them particularly attractive for biomedical applications including biosensing, targeting delivery and bio-detection. In this paper, the advances in properties and applications of Janus nanomaterials are summarized. First, some properties and applications of Janus nanomaterials are described in three different aspects: amphipathicity, catalytic characteristic and biocompatibility. Second, the main biomedical applications are highlighted, which include biosensing, targeting delivery, gene vaccine and antimicrobial. Finally, the further development in preparation of Janus nanomaterials and their applications in food safety are expected.

Contents
1 Introduction
2 Properties of Janus particles
2.1 Amphipathy
2.2 Catalytic characteristic
2.3 Biocompatibility
3 Construction and applications of bioprobes based on Janus particles
3.1 Biological sensing
3.2 Targeting delivery
3.3 Gene vaccine
3.4 Antibacterial agents
4 Outlook

CLC Number: 

[1] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5(6): 1857.
[2] 尹玉勇(Ying Y Y). 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2012.
[3] Walther A, Müller A H E. Soft Matter, 2008, 4: 663.
[4] Binks B P, Fletcher P D I. Langmuir, 2001, 17(16): 4708.
[5] Glaser N, Adams D J, Boker A, Krausch G. Langmuir, 2006, 22(12): 5227.
[6] Fan H, Striolo A. Soft Matter, 2012, 8(37): 9533.
[7] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327(5961): 68.
[8] Walther A, Matussek K, Müller A H. ACS Nano, 2008, 2(6): 1167.
[9] Synytska A, Khanum R, Ionov L, Cherif C, Bellmann C. ACS Appl. Mater. Interfaces, 2011, 3(4): 1216.
[10] Wang C, Yin H F, Dai S, Sun S H. Mater. Chem., 2010, 22(10): 3277.
[11] Lee Y M, Garcia M A, Huls N A F, Sun S H. Dalton Trans., 2010, 122(7): 1293
[12] 康力敏(Kang L M), 刘恩周(Liu E Z), 吴丰(Wu F), 张增庆(Zhang Z Q), 胡晓云(Hu X Y), 姜振益(Jiang Z Y), 樊君(Fan J). 化工进展(Chemical Industry and Engineering Process), 2012(S1):350.
[13] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24(17): 2310.
[14] Pradhan S, Ghosh D, Chen S W. Appl. Mater. Inter., 2009, 1(9): 2060.
[15] Paxton W F, Sen A, Mallouk T E. Chem Inform., 2005, 11(22): 6462.
[16] Fournier-Bidoz S, Arsenault A C, Manners I, Ozin G A. Chem. Commun., 2005, (4): 441.
[17] Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, Mallouk T E. Langmuir, 2006, 22(25): 10451.
[18] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R. Phys. Rev. Lett., 2007, 99(4): 048102
[19] Sen A, Ibele M, Hong Y, Velegol D. Faraday Discuss., 2009, 143: 15.
[20] Chaturvedi N, Hong Y Y, Sen A, Velegol D. Langmuir, 2010, 26(9): 6308.
[21] Gupta A K, Gupta M. Biomaterials, 2005, 26(18): 3995.
[22] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166(2): 182.
[23] Ding T T, Xue Y, Lu H, Huang Z W, Sun J. Ieee T. Nanobiosci., 2012, 11(4): 336.
[24] Prabhakar P K, Vijayaraghavan S, Philip J, Doble M. Curr. Nanosci., 2011, 7(3): 371.
[25] Yoshida M, Roh K H, Lahann J. Biomaterials, 2007, 28(15): 2446.
[26] Roh K H, Yoshida M, Lahann J. Langmuir, 2007, 23(10): 5683.
[27] Schick I, Lorenz S, Gehrig D, Schilmann A M, Bauer H, Panthofer M, Fischer K, Strand D, Laquai F, Tremel W. J. Am. Chem. Soc., 2014, 136(6): 2473.
[28] Wu L Y, Ross B M, Hong S, Lee L P. Small, 2010, 6(4): 503.
[29] Villalonga, R, Diez P, Sanchez A, Aznar E, Martinez-Manez R, Pingarron J M. Chem.-Eur. J., 2013, 19(24): 7889.
[30] Biji P, Patnaik A. Analyst, 2012, 137(20): 4795.
[31] Sanchez A, Diez P, Martinez-Ruiz P, Villalonga R, Pingarron J M. Electrochem. Commun., 2013, 30: 51.
[32] 许潇(Xu X). 北京大学博士论文(Doctoral Dissertation of Peking University), 2012.
[33] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23(7): 1985.
[34] 李恬(Li T), 王祎龙(Wang Y L), 郭方方(Guo F F), 时东陆(Shi D L). 化学进展(Progress in Chemistry), 2013, 25(12):2053.
[35] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chemie, 2007, 46(14): 2448.
[36] Rout S R, Behera B, Maiti T K, Mohapatra S. Dalton T., 2012, 41(35): 10777.
[37] Xu C J, Wang B D, Sun S H. J. Am. Chem. Soc., 2009, 131(12): 4216.
[38] Wang F, Pauletti G M, Wang J T, Zhang J M, Ewing R C, Wang Y L, Shi D L. Adv. Mater., 2013, 25(25):3485.
[39] Sahoo B, Devi K S P, Dutta S, Maiti T K, Pramanik P, Dhara D. J. Colloid Interf. Sci., 2014, 431: 31.
[40] Salem A K, Searson P C, Leong K W. Nat. Mater., 2003, 2(10): 668.
[41] Salem A K, Hung C F, Kim T W, Wu T C, Searson P C, Leong K W. Nanotechnology, 2005, 16(4): 484.
[42] Lee D, Cohen R E, Rubner M F. Langmuir, 2005, 21(21): 9651.
[43] Zhang L, Luo Q, Zhang F, Zhang D M, Wang Y S, Sun Y L, Dong W F, Liu J Q, Huo Q S, Sun H B. J. Mater. Chem., 2012, 22(45): 23741.
[44] Suci P A, Kang S, Young M, Douglas T. J. Am. Chem. Soc., 2009, 131(26): 9164.
[45] Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[7] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[8] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[9] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[10] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[11] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[12] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[13] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.