中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1720-1730 DOI: 10.7536/PC140520 Previous Articles   Next Articles

• Review •

Reversible Photoregulation of DNA Hybridization/Dissociation and Potential Applications

Kou Bo1,2, Tan Linghua1, Wang Changchun1, Xiao Shoujun*2   

  1. 1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
    2. State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91027019), the Natural Science Foundation of Jiangsu Province (No.BK20130747) and the Important Innovation Foundation of Nanjing Institute of Technology, Jiangsu Province (No. CKJA201302)

PDF ( 1664 ) Cited
Export

EndNote

Ris

BibTeX

With the interaction between photoresponsive molecules and DNA, the reversible switching-modes of DNA hybridization and dissociation were realized by photo irradiation, which would become a new generation of DNA materials for nano-architecture and nano-actuation. We briefly review the recently developed methods to photo-regulate DNA hybridization and dissociation, their switching efficiencies, and their operation/service conditions. Compared with other intercalating and inserting functionalities, inserting wedge type azobenzene by acyclic linker into the DNA backbone is considered as the most favorite approach for potential applications. Interesting application works based on the azobenzene tethered DNA materials in nanotechnology and biotechnology are introduced. In conclusion, an outlook regarding these photo-functional DNA materials and their potential applications is given.

Contents
1 Introduction
2 Reversible photoregulation of DNA hybridization
2.1 Tethering azobenzene by acyclic scaffold
2.2 Additional photoresponsive molecules
2.3 Modification of native bases
2.4 Photoresponsive molecules on the scaffold
3 Comparison of the photoregulation approaches
3.1 Photoregulation efficiency
3.2 Photoregulation power
3.3 Thermal bistability of the photoregulation
3.4 Advices for the photoregulation
4 Azobenzene tethered DNA in nanotechnology
4.1 DNA self-assembly controlled by light-irradiation
4.2 DNA nanomachines powered by light-irradiation
4.3 Other photoresponsive DNA nanomaterials
5 Photoregulation of DNA functions in biotechnology
5.1 Photoregulation of DNAzyme activity
5.2 Photoregulation of DNA translation
5.3 Photoregulation of other DNA functions
6 Conclusion and outlook

CLC Number: 

[1] Seeman N C. Nature, 2003, 421(6921): 427.
[2] Bath J, Turberfield A J. Nat. Nanotechnol., 2007, 2(5): 275.
[3] Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.
[4] Stulz E. Chem-Eur. J., 2012, 18(15): 4456.
[5] Leunissen M E, Dreyfus R, Cheong F C, Grier D G, Sha R, Seeman N C, Chaikin P M. Nat. Mater., 2009, 8(7): 590.
[6] Mognetti B M, Leunissen M E, Frenkel D. Soft Matter., 2012, 8(7): 2213.
[7] Yang Y, Liu G, Liu H, Li D, Fan C, Liu D. Nano Lett., 2010, 10(4): 1393.
[8] Liu D, Balasubramanian S. Angew. Chem. Int. Ed., 2003, 42(46): 5734.
[9] Shu W, Liu D, Watari M, Riener C K, Strunz T, Welland M E, Balasubramanian S, Mckendry R A. J. Am. Chem. Soc., 2005, 127(48): 17054.
[10] Mao C, Sun W, Shen Z, Seeman N C. Nature, 1999, 397(6715): 144.
[11] Lu C, Qi X, Orbach R, Yang H, Mironi-Harpaz I, Seliktar D, Willner I. Nano Lett., 2013, 13: 1298.
[12] Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465(7295): 206.
[13] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nanotechnol., 2011, 6(3): 166.
[14] Zhang D Y, Winfree E. J. Am. Chem. Soc., 2009, 131(47): 17303.
[15] Zhang D Y, Seelig G. Nat. Chem., 2011, 3(2): 103.
[16] Gu H Z, Chao J, Xiao S J, Seeman N C. Nat. Nanotechnol., 2009, 4(4): 245.
[17] Gu H Z, Chao J, Xiao S J, Seeman N C. Nature, 2010, 465(7295): 202.
[18] Probst C E, Zrazhevskiy P, Gao X. J. Am. Chem. Soc., 2011, 133(43): 17126.
[19] Li B, Ellington A D, Chen X. Nucleic Acids Res., 2011, 39(16): e110.
[20] Szymanski W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Chem. Rev., 2013, 113(8): 6114.
[21] Kamiya Y, Asanuma H. Accounts Chem. Res., 2014, 47(6): 1663.
[22] Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M. Nat. Protoc., 2007, 2(1): 203.
[23] Dohno C, Uno S, Nakatani K. J. Am. Chem. Soc., 2007, 129(39): 11898.
[24] Ogasawara S, Maeda M. Angew. Chem., 2008, 120(46): 8971.
[25] Wang Q, Yi L, Liu L, Zhou C, Xi Z. Tetrahedron Lett., 2008, 49(34): 5087.
[26] He L, Yang X, Wang K, Wang Q, Zhao F, Huang J, Liu J. Chem. Commun., 2014, 50(58): 7803.
[27] Asanuma H, Ito T, Komiyama M. Tetrahedron Lett., 1998, 39(49): 9015.
[28] Asanuma H, Ito T, Yoshida T, Liang X G, Komiyama M. Angew. Chem. Int. Ed., 1999, 38(16): 2393.
[29] Liang X G, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2002, 124(9): 1877.
[30] Liang X G, Asanuma H, Kashida H, Takasu A, Sakamoto T, Kawai G, Komiyama M. J. Am. Chem. Soc., 2003, 125(52): 16408.
[31] Asanuma H, Liang X G, Yoshida T, Komiyama M. ChemBioChem., 2001, 2(1): 39.
[32] Asanuma H, Takarada T, Yoshida T, Tamaru D, Liang X G, Komiyama M. Angew. Chem. Int. Ed., 2001, 40(14): 2671.
[33] Asanuma H, Matsunaga D, Komiyama M. Nucleic Acids Symposium Series. Fukuoka, Japan: Oxford Univ Press, 2005. 35.
[34] Nishioka H, Liang X G, Kashida H, Asanuma H. Chem. Commun., 2007, 4354.
[35] Liang X G, Takenaka N,Nishioka H, Asanuma H. Chem-Asian J., 2008, 3(3): 553.
[36] Nishioka H, Liang X G, Asanuma H. Chem-Eur. J., 2010, 16(7): 2054.
[37] Matsunaga D, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2004, 126(37): 11452.
[38] Kou B, Guo X, Xiao S, Liang X. Small, 2013, 9(23): 3939.
[39] Endo M, Yang Y, Suzuki Y, Hidaka K, Sugiyama H. Angew. Chem. Int. Ed., 2012, 51: 10518.
[40] Yan Y, Wang X, Chen J I, Ginger D S. J. Am. Chem. Soc., 2013, 135: 8382.
[41] Nishioka H, Liang X G, Kato T, Asanuma H. Angew. Chem. Int. Ed., 2012, 51(5): 1165.
[42] Uno S N, Dohno C, Bittermann H, Malinovskii V L, Häner R, Nakatani K. Angew. Chem., 2009, 121(40): 7498.
[43] Wang C, Pu F, Lin Y, Ren J, Dohn C, Nakatani K, Qu X. Chemistry-Eur.J., 2011, 17(29): 8189.
[44] Maie K, Nakamura M, Yamana K. Nucleos. Nucleot. Nucl., 2006, 25(4/6): 453.
[45] Le Ny A M, Lee C T. J. Am. Chem. Soc. 2006, 128(19): 6400.
[46] Estévez-Torres A, Crozatier C, Diguet A, Hara T, Saito H, Yoshikawa K, Baigl D. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(30): 12219.
[47] Diguet A, Mani N K, Geoffroy M, Sollogoub M, Baigl D. Chem-Eur. J., 2010, 16(39): 11890.
[48] Venancio-Marques A, Bergen A, Rossi-Gendron C, Rudiuk S, Baigl D. ACS Nano., 2014, 8(4): 3654.
[49] Wang X, Huang J, Zhou Y, Yan S, Weng X, Wu X, Deng M, Zhou X. Angew. Chem. Int. Ed., 2010, 49(31): 5305.
[50] Liu H, Xu Y, Li F, Yang Y, Wang W, Song Y, Liu D. Angew. Chem. Int. Ed., 2007, 46(14): 2515.
[51] Eom K, Jung H, Lee G, Park J, Nam K, Lee S W, Yoon D S, Yang J, Kwon T. Chem. Commun., 2012, 48(7): 955.
[52] Ogasawara S, Maeda M. Angew. Chem., 2009, 121(36): 6799.
[53] Singer M, Jäschke A. J. Am. Chem. Soc., 2010, 132(24): 8372.
[54] Cahová H, Jäschke A. Angew. Chem. Int. Ed., 2013, 52(11): 3186.
[55] Mori S, Morihiro K, Obika S. Molecules, 2014, 19(4): 5109.
[56] Lewis F D, Liu X. J. Am. Chem. Soc., 1999, 121(50): 11928.
[57] Yamana K, Kan K, Nakano H. Bioorgan. Med. Chem., 1999, 7(12): 2977.
[58] Liang X G, Nishioka H, Takenaka N, Asanuma H. ChemBioChem, 2008, 9(5): 702.
[59] Liang X G, Mochizuki T, Asanuma H. Small, 2009, 5(15): 1761.
[60] Liang X G, Nishioka H, Mochizuki T, Asanuma H. J. Mater. Chem., 2010, 20(3): 575.
[61] Liang X G, Mochizuki T, Fujii T, Kashida H, Asanuma H. Nat. Comput., 2012, 11(2SI): 231.
[62] Asanuma H, Shirasuka K, Yoshida T, Takarada T, Liang X G, Komiyama M. Chem. Lett., 2001(2): 108.
[63] Brieke C, Heckel A. Chem-Eur. J., 2013, 19(46): 15726.
[64] Beyer C, Wagenknecht H. Synlett., 2010, 2010(09): 1371.
[65] Beharry A A, Sadovski O, Woolley G A. J. Am. Chem. Soc., 2011, 133(49): 19684.
[66] Yuan Q, Wu Y, Wang J, Lu D, Zhao Z, Liu T, Zhang X, Tan W. Angew. Chem., 2013, 125(52): 14215.
[67] Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
[68] Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394(6693): 539.
[69] Rothemund P W K. Nature, 2006, 440(7082): 297.
[70] Ogura Y, Nishimura T, Tanida J. Proc. SPIE, 2008, 70390K.
[71] Tanaka F, Mochizuki T, Liang X G, Asanuma H, Tanaka S, Suzuki K, Kitamura S, Nishikawa A, Ui-Tei K, Hagiya M. Nano Lett., 2010, 10(9): 3560.
[72] Yang Y, Endo M, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2012, 134(51): 20645.
[73] Suzuki Y, Endo M, Yang Y, Sugiyama H. J. Am. Chem. Soc., 2014, 136(5): 1714.
[74] Han D, Huang J, Zhu Z, Yuan Q A, You M X, Chen Y, Tan W H. Chem. Commun., 2011, 47(16): 4670.
[75] Yan Y, Chen J I L, Ginger D S. Nano Lett., 2012, 12(5): 2530.
[76] Hachikubo Y, Iwai S, Uyeda T Q P. Biotechnol. Bioeng., 2010, 106(1): 1.
[77] Liang X, Takenaka N,Nishioka H, Asanuma H. Nucleic Acids Symposium Series. Oxford Univ. Press, 2008. 697.
[78] Kang H Z, Liu H P, Phillips J A, Cao Z H, Kim Y, Chen Y, Yang Z Y, Li J W, Tan W H. Nano Lett., 2009, 9(7): 2690.
[79] Yuan Q, Zhang Y F, Chen Y, Wang R W, Du C L, Yasun E, Tan W H. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(23): 9331.
[80] Lohmann F, Ackermann D, Famulok M. J. Am. Chem. Soc., 2012, 134(29): 11884.
[81] You M X, Huang F J, Chen Z, Wang R W, Tan W H. ACS Nano, 2012, 6(9): 7935.
[82] Wen Y, Xu L, Wang W, Wang D, Du H, Zhang X. Nanoscale, 2012, 4(15): 4473.
[83] Yuan Q, Zhang Y F, Chen T, Lu D Q, Zhao Z L, Zhang X B, Li Z X, Yan C H, Tan W H. ACS Nano, 2012, 6(7): 6337.
[84] Kang H Z, Liu H P, Zhang X L, Yan J L, Zhu Z, Peng L, Yang H H, Kim Y M, Tan W H. Langmuir, 2011, 27(1): 399.
[85] Peng L, You M X, Yuan Q, Wu C C, Han D, Chen Y, Zhong Z H, Xue J G, Tan W H. J. Am. Chem. Soc., 2012, 134(29): 12302.
[86] Liu Y, Sen D. J. Mol. Biol., 2004, 341(4): 887.
[87] Zhou M G, Liang X G, Mochizuki T, Asanuma H. Angew. Chem. Int. Ed., 2010, 49(12): 2167.
[88] Liang X, Zhou M, Kato K, Asanuma H. ACS Synth. Biol., 2013, 2(4): 194.
[89] Zou Y, Chen J, Zhu Z, Lu L, Huang Y, Song Y, Zhang H, Kang H, Yang C J. Chem. Commun., 2013, 49(77): 8716.
[90] Kashida H, Liang X G, Asanuma H. Curr. Org. Chem., 2009, 13(11): 1065.
[91] Liu M Z, Tamaru D, Asanuma H, Komiyama M. Chem. Lett., 2003, 32(12): 1174.
[92] Asanuma H, Tamaru D, Yamazawa A, Liu M Z, Komiyama M. ChemBioChem, 2002, 3(8): 786.
[93] Liu M Z, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2006, 128(3): 1009.
[94] Liang X G, Wakuda R, Fujioka K, Asanuma H. FEBS J., 2010, 277(6): 1551.
[95] Yamazawa A, Liang X G, Asanuma H, Komiyama M. Angew. Chem. Int. Ed., 2000, 39(13): 2356.
[96] Liang X G, Fujioka K, Asanuma H. Chem-Eur. J., 2011, 17(37): 10388.
[97] Kim Y M, Phillips J A, Liu H P, Kang H Z, Tan W H. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(16): 6489.
[98] You M X, Wang R W, Zhang X B, Chen Y, Wang K L, Peng L, Tan W H. ACS Nano, 2011, 5(12): 10090.

[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[3] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[6] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[7] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[8] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[9] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[10] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[11] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[12] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[13] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[14] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[15] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.