Progress in Chemistry 2017, Vol. 29 Issue (4): 348-358 DOI: 10.7536/PC161217 Previous Articles   Next Articles

• Review •

Biomolecular Responsive Polymer Materials

Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51473131, 21275114, 51533007, 51521001).
PDF ( 2421 ) Cited




Among smart polymer materials,biomolecule-responsive polymer is capable of responding to the binding/releasing of biological molecules, for example saccharides, peptides, enzymes, which resulting in dramatic transition in macroscopic properties of materials, such as volume, surface wettability and stiffness. These materials include hydrogels, copolymer films and some other types. The response process between material and biomolecules is generally realized by hydrogen bonds, intermolecular forces and other weak interactions. Due to their excellent designability and good biocompatibility, biomolecule-responsive polymers have many application prospects in biomedical fields such as biosensing, tissue engineering, microfluidic devices, bioseparation and so on, which have attracted more and more interests. Compared with many traditional exogenous stimuli, such as temperature, pH, magnetic field, electric field, or light irradiation, biomolecule-responsive polymers have better targeting ability. Therefore, they can better satisfy the high demand of biomaterials applied in vivo. Furthermore, biomolecule-responsive materials can be developed to the new generation of material for disease diagnosis and drug controllable release. Herein, according to the categories of biomolecules, like saccharides, proteins, enzymes and DNA, the design and response mechanism of biomolecule-responsive polymers materials has been summarized and the applications of these materials are also introduced. Finally, the research prospect of these fields are proposed.

1 Introduction
2 Saccharides-responsive
3 Protein-responsive
4 Enzyme-responsive
5 DNA-responsive
6 Conclusion

CLC Number: 

[1] Mann S. Angew. Chem. Int. Ed. Engl., 2008, 47: 5306.
[2] Yeon J H, Chan K Y T, Wong T C, Chan K, Sutherland M R, Ismagilov R F, Pryzdial E L, Kastrup C J. Sci. Rep., 2015, 5: 10274.
[3] Chang B S, Zhang M X, Qing G Y, Sun T L. Small, 2015, 11: 1097.
[4] Yang L L, Liu A J, Cao S Q, Putri R M, Jonkheijm P, Cornelissen J J L M. Chem.-Eur. J., 2016, 22: 15570.
[5] Tu Y F, Peng F, Adawy A, Men Y J, Abdelmohsen L K E A, Wilson D A. Chem. Rev., 2016, 116: 2023.
[6] Wagner H J, Sprenger A, Rebmann B, Weber W. Adv. Drug Delivery Rev., 2016, 105: 77.
[7] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40: 2909.
[8] Studart A R. Angew. Chem. Int. Ed., 2015, 54: 3400.
[9] Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9: 101.
[10] Mendes P M. Chem. Soc. Rev., 2008, 37: 2512.
[11] Schoene A C, Schulz B, Lendlein A. Macromol. Rapid Commun., 2016, 37: 1856.
[12] Karimi M, Ghasemi A, Zangabad P S, Rahighi R, Basri S M M, Mirshekari H, Amiri M, Pishabad Z S, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref A R, Haghani L, Bahrami S, Hamblin M R. Chem. Soc. Rev., 2016, 45: 1457.
[13] Cao Z Q, Wang G J. Chem. Rec., 2016, 16: 1398.
[14] Wischerhoff E, Badi N, Laschewsky A, Lutz J F. Adv. Polym. Sci., 2010, 240: 1.
[15] 王昀(Wang Y), 冯岸超(Feng A C), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2016, 28(7): 1054.
[16] Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri S M, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref A R, Haghani L, Bahrami S, Hamblin M R. Chem. Soc. Rev., 2016, 45: 1457.
[17] Siegel R A. J. Controlled Release, 2014, 190: 337.
[18] Yan L S, Li X D. Curr. Pharm. Biotechnol., 2016, 17: 227.
[19] Lu Y, Sun W J, Gu Z. J. Controlled Release, 2014, 194: 1.
[20] 尤树森(You S S), 杨万泰(Yang W T), 尹梅贞(Yin M Z). 化学进展(Progress in Chemistry), 2012, 24(11): 2198.
[21] Han S S, Li Z Y, Zhu J Y, Han K, Zeng Z Y, Hong W, Li W X, Jia H Z, Liu Y, Zhuo R X, Zhang X Z. Small, 2015, 11: 2543.
[22] Gu L, Wang N, Nusblat L M, Soskind R, Roth C M, Uhrich K E. J. Bioact. Compat. Polym., 2017, 32: 3.
[23] Yang C, Chang C Y, Wang J, Qu Q S, Hu X Y, Wang Y. Anal. Methods, 2011, 3: 2717.
[24] Tan X, Li B B, Lu X G, Jia F, Santori C, Menon P, Li H, Zhang B H, Zhao J J, Zhang K. J. Am. Chem. Soc., 2015, 137: 6112.
[25] 闫强(Yan Q), 袁金颖(Yuan J Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(9): 1877.
[26] 杨倩丽(Yang Q L), 康晓明(Kang X M), 孙静(Sun J), 魏柳荷(Wei L H), 马志(Ma Z). 化工进展(Chemical Industry and Engineering Progress), 2015, 34(8): 3075.
[27] Liu F, Li X, Zhang L Y, Song Q R, Zhang M, Zhao C X, Wang J, Sun G T, Liu Z H. Curr. Nanosci., 2016, 12: 4.
[28] Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12: 991.
[29] Ulijn R V, Bibi N, Jayawarna V, Thornton P D, Todd S J, Mart R J, Smith A M, Gough J E. Mate. Today, 2007, 10: 40.
[30] Maitz M F, Freudenberg U, Tsurkan M V, Fischer M, Beyrich T, Werner C. Nat. Commun., 2013, 4: 7.
[31] Thambi T, Phan V H G, Lee D S. Macromol. Rapid Commun., 2016, 37: 1881.
[32] Deforest C A, Anseth K S. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 421.
[33] Seliktar D. Science, 2012, 336: 1124.
[34] Callmann C E, Barback C V, Thompson M P, Hall D J, Mattrey R F, Gianneschi N C. Adv. Mater., 2015, 27: 4611.
[35] Cheng R, Meng F H, Deng C, Zhong Z Y. Nano Today, 2015, 10: 656.
[36] Li J, Mo L, Lu C H, Fu T, Yang H H, Tan W. Chem. Soc. Rev., 2016, 45: 1410.
[37] Ohtsubo K, Marth J D. Cell, 2006, 126: 855.
[38] Palaniappan K K, Bertozzi C R. Chem. Rev., 2016, 116: 14277.
[39] Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Mol. Aspects Med., 2016, 51: 56.
[40] Cummings R D. Mol. Biosyst., 2009, 5: 1087.
[41] Arthur C M, Baruffi M D, Cummings R D, Stowell S R. Methods Mol. Biol., 2015, 1207: 1.
[42] Stowell S R, Ju T, Cummings R D. Annu. Rev. Pathol., 2015, 10: 473.
[43] Liu F T, Rabinovich G A. Nat. Rev. Cancer, 2005, 5: 29.
[44] Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357.
[45] Guo A, Gu H B, Zhou J, Mulhern D, Wang Y, Lee K A, Yang V, Aguiar M, Kornhauser J, Jia X Y. Mol. Cell. Proteomics, 2014, 13: 372.
[46] Yarema K J, Bertozzi C R. Curr. Opin. Chem. Biol., 1998, 2: 49.
[47] Boons G J, Wu P. Glycobiology, 2016, 26: 788.
[48] Kiessling L L, Grim J C. Chem. Soc. Rev., 2013, 42: 4476.
[49] Striegler S. Curr. Org. Chem., 2003, 7: 81.
[50] Davis A P, Wareham R S. Angew. Chem. Int. Ed., 1999, 38: 2978.
[51] Carter T S, Mooibroek T J, Stewart P F N, Crump M P, Galan M C, Davis A P. Angew. Chem. Int. Ed., 2016, 55: 9311.
[52] 熊雨婷(Xiong Y T), 李闵闵(Li M M), 熊鹏(Xiong P), 杨梦(Yang M), 卿光焱(Qing G Y), 孙涛垒(Sun T L). 化学进展(Progress in Chemistry), 2014, 26(1): 48.
[53] Dai C F, Sagwal A, Cheng Y F, Peng H J, Chen W X, Wang B H. Pure Appl. Chem., 2012, 84: 2479.
[54] Bosch L I, Fyles T M, James T D. Tetrahedron, 2004, 60: 11175.
[55] Ayyub O B, Sekowski J W, Yang T I, Zhang X, Briber R M, Kofinas P. Biosens. Bioelectron., 2011, 28: 349.
[56] Lee J, Ko S, Kwon C H, Lima M D, Baughman R H, Kim S J. Small, 2016, 12: 2085.
[57] Rauschenberg M, Bandaru S, Waller M P, Ravoo B J. Chemistry, 2014, 20: 2770.
[58] Mazik M. Chem. Soc. Rev., 2009, 38: 935.
[59] Rauschenberg M, Bomke S, Karst U, Ravoo B J. Angew. Chem. Int. Ed. Engl., 2010, 49: 7340.
[60] Walker D B, Joshi G, Davis A P. Cell. Mol. Life Sci., 2009, 66: 3177.
[61] Cai Z Y, Luck L A, Punihaole D, Madura J D, Asher S A. Chem. Sci., 2016, 7(7): 4557.
[62] Qing G Y, Wang X, Jiang L, Fuchs H, Sun T L. Soft Matter, 2009, 5: 2759.
[63] Zhang M X, Qing G Y, Xiong C L, Cui R, Pang D W, Sun T L. Adv. Mater., 2013, 25: 749.
[64] Kuhnle A, Linderoth T R, Hammer B, Besenbacher F. Nature, 2002, 415: 891.
[65] Berthod A. Anal. Chem., 2006, 78: 2093.
[66] Qing G Y, Sun T L. NPG Asia Mater., 2012, 4: e4.
[67] Wang X, Gan H, Sun T L, Su B L, Fuchs H, Vestweber D, Butz S. Soft Matter, 2010, 6: 3851.
[68] Kato M, Sakai-Kato K, Matsumoto N, Toyo'oka T. Anal. Chem., 2002, 74: 1915.
[69] Schneider H J, Kato K. Angew. Chem. Int. Ed., 2007, 46: 2694.
[70] Qing G Y, Sun T L. Adv. Mater., 2011, 23: 1615.
[71] Lv Z Y, Li X L, Chen Z H, Chen J, Chen C, Xiong P, Sun T L, Qing G Y. ACS Appl. Mater. Interfaces, 2015, 7: 27223.
[72] Qing G Y, Zhao S L, Xiong Y T, Lv Z Y, Jiang F L, Liu Y, Chen H, Zhang M X, Sun T L. J. Am. Chem. Soc., 2014, 136: 10736.
[73] Molla M R, Prasad P, Thayumanavan S. J. Am. Chem. Soc., 2015, 137: 7286.
[74] Miyata T, Hayashi T, Kuriu Y, Uragami T. J. Mol. Recogn., 2012, 25: 336.
[75] Kitov P I, Sadowska J M, Mulvey G, Armstrong G D, Ling H, Pannu N S, Read R J, Bundle D R. Nature, 2000, 403: 669.
[76] Plevin M J, Bryce D L, Boisbouvier J. Nat. Chem., 2010, 2: 466.
[77] Hudson K L, Bartlett G J, Diehl R C, Agirre J, Gallagher T, Kiessling L L, Woolfson D N. J. Am. Chem. Soc., 2015, 137: 15152.
[78] 李闵闵(Li M M), 熊雨婷(Xiong Y T), 卿光焱(Qing G Y), 孙涛垒(Sun T L). 生物化学与生物物理进展(Progress in Biochemistry ang Biophysics), 2016, 43(2): 115.
[79] Li M M, Qing G Y, Xiong Y T, Lai Y K, Sun T L. Sci. Rep., 2015, 5: 15742.
[80] Xu Q H, He C L, Zhang Z, Ren K X, Chen X S. ACS Appl. Mater. Interfaces, 2016, 8: 30692.
[81] Prasad R, Aiyer S, Chauhan D S, Srivastava R, Selvaraj K. Nanoscale, 2016, 8: 4537.
[82] Li J, Zheng C, Cansiz S, Wu C, Xu J, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng I T, Yang H H, Tan W. J. Am. Chem. Soc., 2015, 137: 1412.
[83] Haupt K. Nat. Mater., 2010, 9: 612.
[84] Emgenbroich M, Borrelli C, Shinde S, Lazraq I, Vilela F, Hall A J, Oxelbark J, De Lorenzi E, Courtois J, Simanova A, Verhage J, Irgum K, Karim K, Sellergren B. Chem.-Eur. J., 2008, 14: 9516.
[85] Chen W, Ma Y, Pan J M, Meng Z H, Pan G Q, Sellergren B. Polymers, 2015, 7: 1689.
[86] Watanabe M, Akahoshi T, Tabata Y, Nakayama D. J. Am. Chem. Soc., 1998, 120: 5577.
[87] Miyata T, Asami N, Uragami T. Nature, 1999, 399: 766.
[88] Miyata T, Jige M, Nakaminami T, Uragami T. Pro. Nat. Acad. Sci., 2006, 103: 1190.
[89] Park J, Yun H S, Lee K H, Lee K T, Lee J K, Lee S Y. Cancer Res., 2015, 75: 3227.
[90] Chandrawati R. Exp. Biol. Med., 2016, 241: 972.
[91] Murphy G, Nagase H. Mol. Aspects Med., 2008, 29: 290.
[92] Ulijn R V. J. Mater. Chem., 2006, 16: 2217.
[93] Hu J M, Zhang G Q, Liu S Y. Chem. Soc. Rev., 2012, 41: 5933.
[94] Hu Q Y, Katti P S, Gu Z. Nanoscale, 2014, 6: 12273.
[95] Hou X F, Chen Y, Liu Y. Soft Matter, 2015, 11: 2488.
[96] Fletcher D A, Mullins R D. Nature, 2010, 463: 485.
[97] Du X W, Zhou J, Shi J F, Xu B. Chem. Rev., 2015, 115: 13165.
[98] Zhou J, Du X W, Yamagata N, Xu B. J. Am. Chem. Soc., 2016, 138: 3813.
[99] Bai W, Gariano N A, Spivak D A. J. Am. Chem. Soc., 2013, 135: 6977.
[100] Mosquera J, Jimenez-Balsa A, Dodero V I, Vazquez M E, Mascarenas J L. Nat. Commun., 2013, 4: 1874.
[101] Climent E, Mondragon L, Martinez-Manez R, Sancenon F, Dolores Marcos M, Ramon Murguia J, Amoros P, Rurack K, Perez-Paya E. Angew. Chem. Int. Ed., 2013, 52: 8938.
[102] Rahman M M, Li X B, Lopa N S, Ahn S J, Lee J J. Sensors (Basel), 2015, 15: 3801.
[103] Miyata T, Jige M, Hishida Y, Okawa K, Ohya Y, Ouchi T, Uragami T. Preparation of Biomolecule-Responsive Gels by Biomolecular Imprinting. the Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, 2006.
[104] Yan W J, Xu L G, Ma W, Liu L Q, Wang L B, Kuang H, Xu C L. Small, 2014, 10: 4293.
[105] Yan Q, Zhao Y. Chem. Sci., 2015, 6: 4343.
[106] Okuro K, Sasaki M, Aida T. J. Am. Chem. Soc., 2016, 138: 5527.
[107] Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 2016, 1: 16075.
[108] Qing G Y, Lu Q, Xiong Y T, Zhang L, Wang H X, Li X L, Liang X M, Sun T L. Adv. Mater., 2017.DOI: 10.1002/adma.201604670.
[1] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[2] Meng Wang, Jianfeng Yang. Liquid Crystal Elastomers Based Soft Robots [J]. Progress in Chemistry, 2022, 34(1): 168-177.
[3] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[4] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[5] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[6] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[7] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[8] Meng Wang, Danyang Ma, Chengjie Wang. Near-Infrared Light Responsive Liquid Crystal Elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461.
[9] Guangyan Qing, Zhonghui Chen, Guangyan Qing*. Interfacial Interaction on Phospholipid Membrane [J]. Progress in Chemistry, 2018, 30(7): 888-901.
[10] Qian Zhao, Shenghua Li, Yu Liu*. Construction and Functions of Supramolecular Cyclodextrin Gels [J]. Progress in Chemistry, 2018, 30(5): 673-683.
[11] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[12] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[13] Liu Senyang, Peng Liao, Yuan Jinying, Zhu Xiaoxia. Stimuli Responsive Polymers Based on Bile Acids [J]. Progress in Chemistry, 2016, 28(8): 1121-1130.
[14] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[15] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
Full text


Biomolecular Responsive Polymer Materials