中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 375-384 DOI: 10.7536/PC130632 Previous Articles   Next Articles

• Review •

Recent Progress in Gene Delivery Based on Cyclodextrin

Xu Niwei1,2, Liu Mengyan1, Hong Shibin1, Yan Wei1, Fu Jifang1, Deng Wei*1   

  1. 1. Nano-Science & Technology Research Center, Shanghai University, Shanghai 200444, China;
    2. Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Easter Scholar, the National Natural Science Foundation of China (No.21102088, 21174081), Pujiang Scholar(12PJ1403400) and Research Project of Education Department of Hunan (10C0268)

PDF ( 1190 ) Cited
Export

EndNote

Ris

BibTeX

Safe and efficient delivery of nucleic acid constructs to target cells has great potential for the treatment of genetic diseases. Non-viral gene delivery has attracted considerable attention because of large-scale production, immunogenicity and safety concerns. Whereas, non-viral gene delivery still suffered from low transfection efficiency and lack of selectivity, which is the main target on this field. The gene delivery based on cyclodextrin (CD) can offer the possibility for construction of various multi-functional gene deliveries. As a FDA approved bio-material, CDs have been extensively used for gene delivery because of their ability to stabilize the nucleic acids in biological media and their ability to destabilize and permeate biological membranes and for obviating undesirable side effects. CD is not only a widely used host molecule capable of internalizing guest molecules in water, but also a core with abundant OH groups. Therefore, a variety of nonviral vectors have been explored based on CD's host-guest interaction and core structure. Recently, CD modified gene delivery has achieved to the clinic test with remarkable result, showing great potential application. In this review the newest development of the gene delivery based on cyclodextrin is summarized. The article provides detail information about the rotaxanes type, side-chain type, star-shape type and branched type deliveries of nucleic acid. Furthermore, the advantage of CD based gene delivery is emphasized herein, which has been applied in clinical test.

Contents
1 Introduction
2 Gene delivery based on cyclodextrin
2.1 Rotaxane type gene deliveries
2.2 Side-chain type gene deliveries
2.3 Star-shape type gene deliveries
2.4 Branched type gene deliveries
2.5 Other type gene deliveries
3 Conclusion and outlook

CLC Number: 

[1] (a) Xu P, Kirk E A, Zhan Y, Murdoch W J, Radosz M, Shen Y. Angew. Chem. Int. Ed., 2007, 46: 4999; (b) Meager A. Gene "Therapy Technologies: Applications and Regulations", John Wiley & Sons Ltd. U. K. 1999.
[2] Mintzer M A, Simanek E E. Chem. Rev., 2009, 109: 259.
[3] Boussif O, Lezoualc H F, Zanta M A, Mergny M D, Scherman D, Demeneix B, Behr J P. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 7297.
[4] (a) Rekharsky M V, Inoue Y. Chem. Rev., 1998, 1875; (b) Liu L, Guo Q X. J. Inclu. Phenom. Macro. Chem., 2004, 50: 95; (c) Liu L, Guo Q X. J. Inclu. Phenom. Macro. Chem., 2002, 42: 1; (d) Liu L, Guo Q X. J. Phys. Chem. B, 1999, 103: 3461; (e) Mellet C O, Fernandez J M G, Benito J M. Chem. Soc. Rev., 2011, 40: 1586.
[5] Neu M, Fischer D, Kissel T. J. Gene. Med., 2005, 7: 992.
[6] (a) 董海青(Dong H Q), 李永勇(Li Y Y), 李兰(Li L), 时东陆(Shi D L). 化学进展(Prog. Chem.), 2011, 23: 914; (b) 周冬香(Zhou D X), 孙涛(Sun T), 邓维(Deng W). 有机化学(Chin. J. Org. Chem.), 2012, 32: 239.
[7] (a) Lee S C, Choi H S, Ooya T, Yui N. Macromolecules, 2004, 37: 7464.; (b) Choi H S, Yamamoto K, Ooya T, Yui N. Chem. Phys. Chem., 2005, 6: 1081.; (c) Choi H S, Hirasawa A, Ooya T, Kajihara D, Hohsaka T, Yui N. Chem. Phys. Chem., 2006, 7: 1671; (d) Joung Y K, Choi H S, Ooya T, Yui N. J. Inclusion Phenom. Macrocyclic Chem., 2007, 57: 323.
[8] Shuai X T, Merdan T, Unger F, Kissel T. Bioconjug. Chem., 2005, 16: 322.
[9] (a) Li J, Yang C, Li H, Wang X, Goh S, Ding J, Wang D, Leong K. Adv. Mater., 2006, 18: 2969; (b) Yang C, Wang X, Li H, Goh S H, Li J. Biomacromolecules, 2007, 8: 3365; (c) Li J, Loh X J. Adv. Drug Deliv. Rev., 2012, 60: 1000; (d) Li Z, Yin H, Zhang Z, Liu K L, Li J. Biomacromol., 2012, 13: 3162; (e) Yang C, Wang X, Li H, Tan E, Lim C T, Li J. J. Phys. Chem. B, 2009, 113: 7903.
[10] (a) 李春鸽(Li C G), 赵爽(Zhao S), 李俊杰(Li J J), 尹玉姬(Yin Y J). 化学进展(Prog. Chem.), 2013, 25: 122; (b) 尤树森(You S S), 杨万泰(Yang W T), 尹梅贞(Yin M Z). 化学进展(Prog. Chem.), 2012, 24: 2198; (c) 沈银(Shen Y), 胡桂香(Hu G X), 张华星(Zhang H X), 齐莉莉(Qi L L), 骆成才(Luo C C). 化学学报(Acta Chimica Sinica), 2013, 71: 323.
[11] Yamashita A, Kanda D, Katoono R, Yui N, Ooya T, Maruyama A, Akita H, Kogure K, Harashima H. J. Control. Release, 2008, 131: 137.
[12] Ralfkirche I S, Lionel W, Wanger E. Adv. Drug. Deliver. Rev., 2001, 53: 341.
[13] Zhou Y, Wang H, Wang C, Li Y, Lu W, Chen S, Luo J, Jiang Y, Chen J. Mol. Pharmaceutics, 2012, 9: 1067.
[14] Kulkarni A, DeFrees K, Schuldt R A, Vlahu A, VerHeul R, Hyun S, Deng W, Thompson D H. Integr. Biol., 2013, 5: 115.
[15] Liu Y, Yu L, Chen Y, Zhao Y L, Yang H. J. Am. Chem. Soc., 2007, 129: 10656.
[16] Burckbuchler V, Wintgens V, Leborgne C, Lecomte S, Leygue N, Scherman D, Kichler A, Amiel C. Bioconjugate Chem., 2008, 19: 2311.
[17] Zhang J, Sun H, Ma P X. ACS Nano, 2010, 4: 1049.
[18] Liu Y, Yu Z, Zhang Y, Guo D, Liu Y. J. Am. Chem. Soc., 2008, 130: 10431.
[19] Buckwalter D J, Sizovs A, Ingle N P, Reineke T M. ACS Macro Lett., 2012, 1: 609.
[20] Deng W, Chen J, Kulkarnia A, Thompson D H. Soft Matter, 2012, 8: 5843.
[21] Kulkarni A, Deng W, Hyun S, Thompson D H. Bioconjugate Chem., 2012, 23: 933.
[22] (a)Aloorkar N H, Kulkarni A S, Patil R A, Ingale D J. Int. J. Pharm. Sci. Nanotechnol., 2012, 5: 1675; (b) 付云(Fu Y), 王海蛟(Wang H J), 张骥(Zhang J), 余孝其(Yu X Q). 化学学报(Acta Chimica Sinica), 2013, 71(04): 585.
[23] Huang H, Tang G, Wang Q, Li D, Shen F, Zhou J, Yu H. Chem. Commun., 2006, 2382.
[24] (a) Srinivasachari S, Fichter K M, Reineke T M. J. Am. Chem. Soc., 2008, 130: 4618; (b) Sizovs A, McLendon P M, Srinivasachari S, Reineke T M. Top. Cur. Chem., 2010, 131; (c) Srinivasachari S, Reineke T M. Biomaterials, 2009, 30: 928.
[25] (a) Bennevault-Celton V, Urbach A, Martin O, Pichon C, Guégan P, Midoux P. Bioconjugate Chem., 2011, 22: 2404; (b) Bertrand E, Goncalves C, Billiet L, Gomez J P, Pichon C, Cheradame H, Midoux P, Guegan P. Chem. Commun., 2011, 47: 12547.
[26] (a) Zhao F, Yin H, Zhang Z, Li J. Biomacromolecules, 2013, 14: 476; (b) Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin E H, Tighiouart M, Chen Z, Nie S. ACS Nano, 2011, 5: 6184; (c) Wang X, Li J, Wang Y, Cho K J, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin H J C, Tighiouart M, Nie S, Chen Z, Shin D M. ACS Nano, 2009, 3: 3165; (d)Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645.
[27] (a) Xu F J, Zhang Z X, Ping Y, Li J, Kang E T, Neoh K G. Biomacromolecules, 2009, 10: 285; (b) Liu M, Li Z H, Xu F J, Lai L H, Wang Q Q, Tang G P, Yang W T. Biomaterials, 2012, 33: 2240.
[28] (a) Hu Y, Zhu Y, Yang W T, Xu F J. ACS Appl. Mater. Interfaces, 2013, 5: 703; (b) Xiu K M, Yang J J, Zhao N N, Li J S, Xu F J. Acta Biomater., 2013, 9: 4726; (c) Hu Y, Zhu Y, Yang W T, Xu F J. ACS Appl. Mater. Interf., 2013, 5: 703.
[29] (a) Meéndez-Ardoy A, Guilloteau N, Giorgio C D, Vierling P, Santoyo-Gonzlez F, Mellet C O, Fernndez J M G. J. Org. Chem., 2011, 76: 5882; (b) Bienvenu C, Martinez A, Jimenez Blanco J L, Di Giorgio C, Vierling P, Ortiz Mellet C, Defaye J, Garcia Fernandez J M. Organ. Biomol. Chem., 2012, 10: 5570; (c) Diaz-Moscoso A, Guilloteau N, Bienvenu C, Mendez-Ardoy A, Jimenez Blanco J L, Benito J M, Le Gourrierec L, Di Giorgio C, Vierling P, Defaye J. Biomaterials, 2011, 32: 7263; (d) Diaz-Moscoso A, Le Gourrierec L, Gomez-Garcia M, Benito J M, Balbuena P, Ortega-Caballero F, Guilloteau N, Di Giorgio C, Vierling P, Defaye J. Chem. Euro. J., 2009, 15: 12871.
[30] (a) Villari V, Mazzaglia A, Darcy R, O'Driscoll C M, Micali N. Biomacromolecules, 2013, 14: 811; (b) O'Mahony A M, Godinho B M D C, Ogier J, Devocelle M, Darcy R, Cryan J F, O'Driscoll C M. ACS Chem. Neurosci., 2012, 3: 744.
[31] (a) 何谷 (He G), 郭丽(Guo L). 有机化学(Chin. J. Org. Chem.), 2008, 8: 1326; (b) 董博(Dong B), 闫熙博(Yan X B), 牛玉洁(Niu Y J), 王欣(Wang X), 王连永(Wang L Y), 王燕铭(Wang Y M). 化学进展(Prog. Chem.), 2012, 24: 2352.
[32] (a) Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K, Bioconjugate Chem., 2002, 13: 1211; (b) Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. Bioconjugate Chem., 2003, 14: 342; (c) Arima H, Arizono M, Higashi T, Yoshimatsu A, Ikeda H, Motoyama K, Hattori K, Takeuchi T, Hirayama F, Uekama K. Cancer Gene Therapy, 2012, 19: 358; (d) Ikeda Y, Motoune S, Ono M, Arima H, Hirayama F, Uekama K. J. Drug Deliv. Sci. Tech., 2004, 14: 69.
[33] (a) Chen Y, Zhou L Z, Pang Y, Huang W, Qiu F, Jiang X L, Zhu X Y, Yan D Y, Chen Q. Bioconjugate Chem., 2011, 22: 1162; (b) Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. J. Am. Chem. Soc., 2013, 135: 4765; (c) Dong R, Chen H, Wang D, Zhuang Y, Zhu L, Su Y, Yan D, Zhu X. ACS Macro Letters, 2012, 1: 1208; (d) Dong R, Liu Y, Zhou Y, Yan D, Zhu X. Polymer Chem., 2011, 2: 2771; (e) Dong R, Zhou L, Wu J, Tu C, Su Y, Zhu B, Gu H, Yan D, Zhu X. Chem. Commun., 2011, 47: 5473.
[34] (a) Park I K, von Recum H A, Jiang S, Pun S H. Langmuir, 2006, 22: 8478; (b) Pun S H, Bellocq N C, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis M E. Bioconjugate Chem., 2004, 15: 831; (c) Bellocq N C, Kang D W, Wang X, Jensen G S, Pun S H, Schluep T, Zepeda M, Davis M E. Bioconjugate Chem., 2004, 15: 1201.
[35] (a) Davis M E, Zuckerman J, Choi C H, Seligson D, Tolcher A, Alabi C, Yen Y, Heidel J, Ribas A. Nature, 2010, 464: 1067; (b) Hwang S J, Bellocq N C, Davis M E. Bioconjugate Chem., 2001, 12: 280; (c) Pun S H, Davis M E. Bioconjugate Chem., 2002, 13: 630; (d) Pun S H, Bellocq N C, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis M E. Bioconjugate Chem., 2004, 15: 831; (e)Kulkarni R P, Mishra S, Fraser S E, Davis M E. Bioconjugate Chem., 2005, 16: 986.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[12] Lingchuang Bai, Jing Zhao, Yakai Feng. Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells [J]. Progress in Chemistry, 2019, 31(2/3): 300-310.
[13] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[14] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[15] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.