中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 366-374 DOI: 10.7536/PC130839 Previous Articles   Next Articles

• Review •

Biological Application of Sulfobetaine Methacrylate Polymers

Xu Lina1, Ma Peipei1, Chen Qiang1,2,3, Lin Sicong1, Shen Jian*1,3   

  1. 1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. High-Tech Research Institute of Nanjing University, Changzhou 213164, China;
    3. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National High Technology Research and Development Program of China(No.2006AA03Z445) and the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

PDF ( 4002 ) Cited
Export

EndNote

Ris

BibTeX

Zwitterionic polymers have anion and cation groups simultaneously, which make them highly hydrated and render them unique biocompatibility. Because of their unique zwitterionic pendant-side chain structures, sulfobetaine methacrylate (SBMA) polymers present the excellent anti-biofouling properties, i.e. the resistance to protein adsorption, the inhibition of bacterial and blood coagulation, which make them increasingly applied in a wide range of biological and medical related fields recently. The hydration theory, one of the widely accepted antifouling mechanisms, is briefly introduced. In this article, recent progress in the properties, synthesis methods and surface construction methods is reviewed, the applications of SBMA polymers in the materials for artificial organs, tissue engineering, biological separation, bio-monitoring system and temperature-sensitive materials are summarized. In addition, SBMA polymers holding great potential for use in biomaterials and issues existed in these applications are also discussed.

Contents
1 Introduction
2 Mechanism investigation of biocompatibility
3 Preparation of SBMA polymers and methods of immobilization of SBMA polymers onto the materials
4 Application of SBMA polymers
4.1 Application of SBMA polymers in the materials for artificial organs
4.2 Application of SBMA polymers in the tissue engineering
4.3 Application of SBMA polymers in the biological separation
4.4 Application of SBMA polymers in the bio-monitoring system
4.5 PSBMA used for temperature-sensitive materials
4.6 Others
5 Conclusion and perspective

CLC Number: 

[1] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40: 2909.
[2] Jiang S, Cao Z. Adv. Mater., 2010, 22(9): 920.
[3] Salamone J C, Volksen W, lsrael S C, Olson A P, Raia D C. Polymer, 1977, 18: 1058.
[4] Cardoso J, Manero O. J. Polym. Sci., Part B: Polym. Phys., 1991, 29: 639.
[5] Lee W F, Tsai C C. Polymer, 1995, 36: 357.
[6] Williams D F, Biomaterials, 2008, 29: 2941.
[7] 林思聪(Ling S C). 高分子通报(Polym. Bull.), 1998, 1(1): 1.
[8] 何淑漫(He S M), 周健(Zhou J). 化学进展(Progress in Chemistry), 2010, 22(4): 760.
[9] Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. J. Biomed. Mater. Res., 1998, 39: 323.
[10] Tanaka M, Mochizuki A. J. Biomater. Sci. Polym. Ed., 2010, 21: 1849.
[11] Suzawa T, Shirahama H. Adv. Colloid. Interface. Sci., 1991, 35: 139.
[12] Chen H, Yuan L, Song W, Wu Z K, Li Dan. Prog. Polym. Sci., 2008, 33: 1059.
[13] Wang Y X, Robertson L J, Spillman Jr B W, Claus O R. Pharm. Res., 2004, 21: 1362.
[14] Chen M, Briscoe W H, Armes S P, Klein J. Science, 2009, 323: 1698.
[15] Fang F, Igal S. Biophys. J., 2001, 80: 2568.
[16] Kitano H, Kawasaki A, Kawasaki H, Morokoshi S. J. Colloid Interf. Sci., 2005, 282: 340.
[17] Wei J H, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B L, Oda Y. J. Biomed. Mater. Res. B, 2007, 81: 66.
[18] Estephan Z G, Schlenoff P S, Schlenoff J B. Langmuir, 2011, 27: 6794.
[19] 何晓燕(He X Y), 周文瑞(Zhou W R), 徐晓君(Xu X J), 杨武(Yang W). 化学进展(Progress in Chemistry), 2013, 25(6): 1023.
[20] Heath D E, Cooper S L. Acta Biomater., 2012, 8: 2899.
[21] 丁伟(Ding W), 毛程(Mao C), 韦兆水(Wei Z S), 李明(Li M), 于涛(Yu T), 曲广淼(Qu G M). 应用化学(Chinese Journal of Applied Chemistry), 2011, 28(5): 555.
[22] Bütün V. Polymer, 2003, 44: 7321.
[23] Zhao Y H, Wee K H, Bai R. ACS Appl. Mater. Inter., 2010, 2: 203.
[24] Zhang Z, Finlay J A, Wang L F, Gao Y, Callow J A, Callow M E, Jiang S Y. Langmuir, 2009, 25: 13516.
[25] Dai F Y, Liu W Q. Biomaterials, 2011, 32: 628.
[26] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2187.
[27] Yuan B, Chen Q, Ding W Q, Liu P S, Wu S S, Lin S C, Shen J, Gai Y. ACS Appl. Mater. Interfaces, 2012, 4: 4031.
[28] Liu P S, Chen Q, Wu S S, Shen J, Lin S C. J. Membrane Sci., 2010, 350: 387.
[29] 马佳妮(Ma J N), 宫铭(Gong M), 杨珊(Yang S), 张世平(Zhang S P), 宫永宽(Gong Y K). 化学进展(Progress in Chemistry), 2008, 20(07/08): 1151.
[30] Chang Y, Chen W Y, Yandi W, Shi Y J, Chu W L, Liu Y L, Chu C W, Ruaan R C, Higuchi A. Biomacromolecules, 2007, 8: 122.
[31] Kuo W H, Wang M J, Chien H W, Wei T C, Lee C, Tsai W B. Biomacromolecules, 2011, 12: 4348.
[32] Ye S H, Johnson Jr A C, Woolley R J, Murata H, Gamble J L, Ishihara K, Wagner R W. Colloids Surf. B Biointerfaces, 2010, 79: 357.
[33] Kuang J H, Messersmith P B. Langmuir, 2012, 28: 7258.
[34] Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J S, Marshall V S, Jones J M. Science, 1998, 282: 1145.
[35] Shamblott M J, Axelman J, Wang S P, Bugg E M, Littlefield J W, Donovan P J, Blumenthal P D, Huggins G R, Gearhart J D. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 13726.
[36] Villa-Diaz L G, Brown S E, Liu Y, Ross A M, Lahann J, Parent J M, Krebsbach P H. Stem Cells, 2012, 30: 1174.
[37] Villa-Diaz G L, Nandivada H, Ding J, Nogueira-de-Souza C N, Krebsbach H P, O'Shea S K, Lahann J, Smith D G. Nat. Biotechnol., 2010, 28: 581.
[38] 刘红艳(Liu H Y), 周健(Zhou J). 化工进展(Chemical Industry and Engineering Progress), 2012, 24(11): 2187.
[39] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J. Membrane Sci., 2010, 362: 255.
[40] 杨更亮(Yang G L), 刘海燕(Liu H Y). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40(6): 631.
[41] Gritti F, Guiochon G. J. Chromatogr. A, 2012, 1228: 2.
[42] Lin H, Ou J J, Zhang Z B, Dong J, Wu M H, Zou H F. Anal. Chem., 2012, 84: 2721.
[43] Wang X C, Ding K, Yang C M, Lin X C, Lü H X, Wu X P, Xie Z H. Electrophoresis, 2010, 31: 2997.
[44] Sanghavi B J, Mobin S M, Mathur P, Lahiri G K, Srivastava A K. Biosens. Bioelectron., 2013, 39: 124.
[45] Marguet M, Bonduelle C, Lecommandoux S. Chem. Soc. Rev., 2013, 42: 512.
[46] Qian T, Yu C F, Wu S S, Shen J. Biosens. Bioelectron., 2013, 50: 157.
[47] Karman S B, Diah S Z M, Gebeshuber I C. Sensors, 2012, 12: 14232.
[48] Angenendt P, Glökler J, Sobek J, Lehrach H, Cahill J D. J. Chromatogr. A, 2003, 1009: 97.
[49] Rebeski D E, Winger E M, Shin Y K, Lelenta M, Robinson M M, Varecka R, Crowther J R. J. Immunol. Methods, 1999, 226: 85.
[50] Qian T, Yu C F, Wu S S, Shen J. Colloids Surf., B, 2013, 112: 310.
[51] Seurynck-Servoss S L, White A M, Baird C L, Rodland K D, Zangar R C. Anal. Biochem., 2007, 371: 105.
[52 ] Nguyen T A, Baggerman J, Paulusse M J J, Zuilhof H, van Rijn C J M. Langmuir, 2012, 28: 604.
[53] 喻晓莉(Yu X L), 杨健(Yang J), 倪彦(Yan Y). 自动化技术与应用(Techniques of Automation & Applications), 2009, 28(2): 107.
[54] Sakai Y, Sadaoka Y, Matsuguchi M. Sens. Actuators B, 1996, 85: 35.
[55] Sakai Y, Matsuguchi M, Hurukawa T. Sens. Actuators B, 2000, 66: 135.
[56] Lee M H, Rhee H W, Gong M S. Sens. Actuators B, 2001, 73: 124.
[57] Lee C W, Rhee H W, Gong M S. Synth. Met., 1999, 106: 177.
[58] Su P G, Uen C L. Sens. Actuators B, 2005, 107: 317.
[59] Li Y, Yang M J. Sens. Actuators B, 2002, 87: 184.
[60] Han D S, Gong M S. Sens. Actuators B, 2010, 145: 254.
[61] Han D S, Gong M S. Macromol. Res., 2010, 18: 260.
[62] Chang Y, Yandi W, Chen W Y, Shih Y J, Yang C C, Chang Y, Ling Q D, Higuchi A. Biomacromolecules, 2010, 11: 1101.
[63] Polzer F, Heigl J, Schneider C, Ballauff M, Borisov V O. Macromolecules, 2011, 44: 1654.
[64] Costerton J W, Cheng K J, Geesey G G, Ladd T I, Nickel J C, Dasgupta M, Marrie I T. Annu. Rev. Microbiol., 1987, 41: 435.
[65] Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S Y. Biomaterials, 2007, 28: 4192.
[66] Bargman M J. Semin. Dialysis, 2012, 25: 668.
[67] Leblanc M, Ouimet D, Pichette V. Semin. Dialysis, 2001, 14: 50.
[68] Li M, Neoh K G, Xu L Q, Wang R, Kang E T, Lau T, Olszyna D P, Chiong E. Langmuir, 2012, 28: 16408.
[69] Zhang Z, Finlay J A, Wang L F, Gao Y, Callow J A, Callow M E, Jiang S Y. Langmuir, 2009, 25: 13516.

[1] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[2] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[3] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[4] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[5] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[6] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[7] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[8] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[9] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[10] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[11] Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao, Ji Jian. Zwitterions in Surface Engineering of Biomedical Nanoparticles [J]. Progress in Chemistry, 2014, 26(11): 1849-1858.
[12] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[13] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[14] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[15] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.