中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (12): 2112-2118 Previous Articles   Next Articles

• Review •

Diacetylenic Time-Temperature Indicators

Cheng Huan, Zhu Guangming*, Song Rui   

  1. Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an 710129, China
  • Received: Revised: Online: Published:
PDF ( 934 ) Cited
Export

EndNote

Ris

BibTeX

Diacetylenic time-temperature indicator (TTI), which possesses at least a pair of accumulative triple bond, may polymerize into double bond in its solid state when exposed to high temperature, light irradiation or any other energy stimulations, meanwhile, it shows a series of color or color density change during this process.Therefore, TTI can be used for product package to indicate the accumulated time-temperature history of the product. The latest advances in diacetylenic time-temperature indicators are reviewed in this paper. Their structures, physicochemical properties, photochromic mechanism, impact factors of color change and applications are further expounded.

Contents
1 Introduction
2 Structures and character of diacetylenic indicators
2.1 Molecular structures of diacetylenic indicators
2.2 Characters of diacetylenes with different sub-stituents
2.3 Impact factors of color change of diacetylene
3 Application and outlook

CLC Number: 

[1] 常大伟(Chang D W), 谢晶(Xie J), 徐世琼(Xu S Q), 陈邓曼(Chen D M). 农产品加工学刊(Nong Chan Pin Jia Gong Xue Kan), 2005, l(1): 7—12
[2] Kuriyama K, Kikuchi H, Kajiyama T. Langmuir, 1998, 14: 1130—1138
[3] Carpick R W, Mayer T M, Sasaki D Y, Burns A R. Langmuir, 2000, 16: 4639—4647
[4] Preziosi A F, Prusik T. US 4788151, 1988
[5] Chu B, Xu R L. Acc. Chem. Res., 1991, 24: 384—389
[6] Menzel H, Horstmann S, Mowery M D, Cai M, Evans C E. Polymer, 2000, 41: 8113—8119
[7] Schott M, Spagnoli S, Weiser G. Chem. Phys., 2007, 333: 246—253
[8] Van den Heuvel M, Löwik D W P M, van Hest J C M. Biomacromolecules, 2010, 11: 1676—1683
[9] Song J, Cisar J S, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 8459—8465
[10] Kim J M, Lee Y B, Yang D H, Lee J S, Lee G S, Ahn D J. J. Am. Chem. Soc., 2005, 127, 17580—17581
[11] Wu S, Niu L, Shen J, Zhang Q, Bubeck C. Macromolecules, 2009, 42: 362—367
[12] Xu Y, Smith M D, Geer M F, Pellechia P J, Brown J C, Wibowo A C, Shimizu L S. J. Am. Chem. Soc., 2010, 132: 5334—5335
[13] Cantow H J. Adv. Polym. Sci., 1984: 63
[14] Baughman R H, Chance R R. J. Polym. Sci. Pol. Phys., 1976, 14: 2037—2045
[15] Reppy M A, Pindzola B A. Chem. Commun., 2007, 4317—4338
[16] Schott M. J. Phys. Chem. B, 2006, 110: 15864—15868
[17] Dautel O J, Robitzer M, Lere-Porte J P, Serein-Spirau F, Moreau J J E. J. Am. Chem. Soc., 2006, 128: 16213—16223
[18] Filhol J S, Deschamps J, Dutremez S G, Boury B, Barisien T, Legrand L, Schott M. J. Am. Chem. Soc., 2009, 131: 6976—6988
[19] Lee J, Kim H J, Kim J. J. Am. Chem. Soc., 2008, 130: 5010—5011
[20] O'Brien D F, Armitage B, Benedicto A, Bennett D E, Lamparski H G, Lee Y S, Srisiri W, Sisson T M. Acc. Chem. Res., 1998, 31: 861—868
[21] Potisatityuenyong A, Tumcharern G, Dubas S T, Sukwattanasinitt M. J. Colloid Interface Sci., 2006, 304: 45—51
[22] Cheng Q, Stevens R C. Langmuir, 1998, 14: 1974—1976
[23] Zhong L, Zhu X, Duan P, Liu M. J. Phys. Chem. B, 2010, 114: 8871—8878
[24] Menger F M, Keiper J S. Angew. Chem. Int. Ed., 2000, 39: 1907—1920
[25] Zana R. Adv. Colloid Interface Sci., 2002, 97: 205—253
[26] Wacharasindhu S, Montha S, Boonyiseng J, Potisatityuenyong A, Phollookin C, Tumcharern G, Sukwattanasinitt M. Marcromolecules, 2010, 43: 716—724
[27] Yuan Z, Lee C W, Lee S H. Angew. Chem., 2004, 116: 4293—4296
[28] Gou M L, Guo G, Zhang J, Men K, Song J, Luo F, Zhao X, Qian Z Y, Wei Y Q. Sens. Actuators, B: Chem., 2010, 150: 406—411
[29] Ahn D J, Chae E H, Lee G S, Shim H Y, Chang T E, Ahn K D, Kim J M. J. Am. Chem. Soc., 2003, 125: 8976—8977
[30] Phollookin C, Wacharasindhu S, Ajavakom A, Tumcharern G, Ampornpun S, Eaidkong T, Sukwattanasinitt M. Macromolecules, 2010, 43: 7540—7548
[31] Ma Z, Li J, Liu M, Cao J, Zou Z, Tu J, Jiang L. J. Am. Chem. Soc., 1998, 120: 12678—12679
[32] Jose D A, Stadlbauer S, Konig B. Chem. Eur. J., 2009, 15: 7404—7412
[33] Jelinek R, Kolusheva S. Biotechnol. Adv., 2001, 19: 109—118
[34] Orcutt K M, Wells M L. J. Membrane Sci., 2007, 288: 247—254
[35] Su Y, Li J, Jiang L. Colloid Surface B, 2004, 38: 29—33
[36] Cheng Q, Stevens R C. Adv. Mater., 1997, 9: 481—483
[37] Zadmard R, Arendt M, Schrader T. J. Am. Chem. Soc., 2004, 126: 7752—7753
[38] Kolusheva S, Zadmard R, Schrader T, Jelinek R. J. Am. Chem. Soc., 2006, 128: 13592—13598
[39] Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy J O, Spevak W, Stevens R C. Chem. Biol., 1996, 3: 113—120
[40] Kolusheva S, Kafri R, Katz M, Jelinek R. J. Am. Chem. Soc., 2001, 123: 417—422
[41] Lapersonne-Meyer C. Int. J. Mor. Phys. B, 2001, 15: 3593—3596
[42] Lee J, Jun H, Kim J. Adv. Mater., 2009, 21: 3674—3677

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[15] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
Viewed
Full text


Abstract

Diacetylenic Time-Temperature Indicators