中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1981-1988 DOI: 10.7536/PC130145 Previous Articles   

• Review •

CCTO with Giant Dielectric Constant and CCTO/Polymer Composite

Wang Yajun*, Wang Fangfang, Feng Changgen, Zeng Qingxuan   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
PDF ( 814 ) Cited
Export

EndNote

Ris

BibTeX

Perovskite-like structure CaCu3Ti4O12 (CCTO) dielectric ceramic has been paid much attention in the field of materials science and application for its colossal dielectric constant, independence of dielectric properties on the frequency and temperature in a wide range, and nonlinear behaviors. Various theories and models which are used to explain the original of colossal dielectric constant of CCTO are compared, among which the internal barrier layer capacitance (IBLC), the most reasonable model is claimed in detail. Preparing methods, preparing conditions and various modification methods for preparing CCTO and improving the dielectric properties are discussed. Ion-doping is the most popular way to decrease the dielectric loss of CCTO. The effects of ion-doping depend on the ionic radius, ionic valence and so on. It is a promising way to prepare the 0-3 composites by using ceramic as filler and polymer as matrix. The research progress of CCTO/polymer composites is discussed here. And the prospects of CCTO is put forward.

Contents
1 Introduction
2 Origin of giant dielectric constant of CCTO
2.1 Classical model
2.2 Internal barrier layer capacitance (IBLC) model
3 Preparation of CCTO
3.1 Preparation of CCTO powder
3.2 Method for reducing sintering temperature and time of CCTO
3.3 Preparation of CCTO film
4 Improvement of the properties of CCTO
4.1 A or B site doping of CCTO
4.2 Substitution of CCTO
5 CCTO/polymer composite
5.1 CCTO/polymer composite and mixture model
5.2 Improvement of the interfacial properties of CCTO/polymer
5.3 Three-phase composite
6 Conclusion

CLC Number: 

[1] 孙泉(Sun Q). 集成电路应用(Appl. IC), 2004, 8: 30—31
[2] 张建辉(Zhang J H). 金属功能材料(Met. Funct. Mater. ), 2007, 3: 37—40
[3] Bochu B, Deschizeaux M N, Joubert J C, Collomb A, Chenavas J, Marezio M. J. Solid State Chem., 1979, 29(2): 291—298
[4] Krohns S, Lunkenheimer P, Kant C, Pronin A V, Brom H B, Nugroho A A, Diantoro M, Loidl A. Appl. Phys. Lett., 2009, 94: art. no. 122903
[5] Zhang L J, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F. Appl. Phys. Lett., 2005, 87: art. no. 142901
[6] Mashingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S. Mater. Chem. Phys., 2008, 109: 262—270
[7] Byeong K K, Hyung S L, Lee J W, Seung E L, Yong S C. J. Am. Ceram. Soc., 2010, 93(9): 2419—2422
[8] Chung S Y, Kim I D, Kang S J. Nat. Mater., 2004, 3: 774—778
[9] Si W, Cruz E M, Johnson P D, Barnes P W, Woodward P. Appl. Phys. Lett., 2002, 81(11): 2056—2059
[10] 周小莉(Zhou X L), 杜丕一(Du P Y). 无机材料学报(J. Inorg. Mater. ), 2005, 20(2): 484—488
[11] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W. J. Solid State Chem., 2000, 151: 323—325
[12] He L X, Neaton J B, Cohenet M H, Vanderbilt D. Phys. Rev. B, 2002, 65: art. no. 214112
[13] Zhu Y, Zheng J C, Wu L, Frenkel A I, Hanson J, Northrup P, Ku W. Phys. Rev. Lett., 2007, 99: art. no. 037602
[14] Lunkenheimer P, Bobnar V, Proninet A V, Ritus A I, Volkov A A, Loidl A. Phys. Rev. B, 2002, 66: art. no. 052105
[15] Lunkenheimer P, Ficht R, Ebbinghaus S G, Loidl A. Phys. Rev. B, 2004, 70: art. no. 172102
[16] Sinclair D C, Adams T B, Morrison F D, West A R. Appl. Phys. Lett., 2002, 80(12): 2153—2156
[17] Sebald J, Krohnsa S, Lunkenheimera P, Ebbinghaus S G, Riegg S, Reller A, Loidl A. Solid State Commun., 2010, 150: 857—860
[18] Schmidt R, Stennett M C, Hyatt N C, Pokorny J, Gonjal J P, Li M, Sinclair D C. J. Eur. Ceram. Soc., 2012, 32: 3313—3323
[19] Fang T T, Shiau H K. J. Am. Ceram. Soc., 2004, 87(11): 2072—2079
[20] Cao G H, Feng L X, Wang C. J. Phys. D: Appl. Phys., 2007, 40(9): 2899—2905
[21] Adams T B, Sinclair D C, West A R. Adv. Mater., 2002, 14(8): 1321—1323
[22] Wang C, Zhang H J, He P M, Cao G H. Appl. Phys. Lett., 2007, 91: art. no. 052910
[23] Fang T T, Liu C P. Chem. Mater., 2005, 17: 5167—5171
[24] 熊利蓉(Xiong L R). 陕西师范大学博士论文(Doctoral Dissertation of Shaanxi Normal University), 2010
[25] Leret P, Rubia M A, Rubio-Marcos R, Romero J J, Fernandez J F. Int. J. Appl. Ceram. Tec., 2011, 8(5): 1201—1207
[26] Sun D L, Wu A Y, Yin S T. J. Am. Ceram. Soc., 2007, 91(1): 169—173
[27] 杨雁(Yang Y), 李盛涛(Li S T). 无机材料学报(J. Inorg. Mater. ), 2010, 25(8): 835—839
[28] 马广(Ma G), 赵景畅(Zhao J C), 吴兴惠(Wu X H). 材料导报: 研究篇(Mater. Rev. ), 2010, 24(4): 86—88
[29] Masingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S. Mater. Chem. Phys., 2008, 109: 262—270
[30] Lu J J, Wang D Q, Zhao C J. J. Alloys Compd., 2011, 509: 3103—3107
[31] 叶中郎(Ye Z L), 朱泽华(Zhu Z H), 高红霞(Gao H X), 谢兆军(Xie Z J), 赵海杰(Zhao H J). 功能材料与器件学报(J. Fun. Mater. Devi. ), 2011, 5: 436—439
[32] Vangchangyia S, Swatsitang E, Thongbai P, Pinitsoontorn S, Yamwong T, Maensiri S, Amornkitbamrung V, Chindaprasirt P. J. Am. Chem. Soc., 2012, 95(5): 1497—1500
[33] 杨昌辉(Yang C H), 周小莉(Zhou X L), 徐刚(Xu G), 韩高荣(Han G R), 翁文剑(Weng W J), 杜丕一(Du P Y). 硅酸盐学报(J. Chin. Ceram. Soc. ), 2006, 6: 753—756
[34] Kumar C. J. Mater. Sci.-Mater. Electron., 2011, 22: 579—582
[35] Prakash B S, Varma K B R. J. Solid State Chem., 2007, 180: 1918—1927
[36] Goswami S, Sen A. Ceram. Int., 2010, 36: 1629—1631
[37] Zhao Y L, Pana G W, Rena Q B, Cao Y G, Feng L X, Jiao Z K. Thin Solid Films, 2003, 445: 7—13
[38] 周小莉(Zhou X L), 杜丕一(Du P Y), 韩高荣(Han G R), 翁文剑(Weng W J). 浙江大学学报(工学版)(J. Zhejiang University (Engineering Science)), 2006, 40(8): 1446—1450
[39] Saji V S, Choe H C. Bull. Mater. Sci., 2010, 33(3): 203—207
[40] Yan Y, Jin L, Feng L. Mater. Sci. Eng. B, 2006, 130(1/3): 146—150
[41] Krohns S, Lu J, Lunkenheimer P, Brize V, Lambert C A, Gervais M, Gervais F, Bouree F, Porcher F, Loidl A. The Eur. Phys. J. B, 2009, 72: 173—182
[42] Feng L X, Tang X M, Yan Y Y, Chen X A, Jiao Z K, Cao G H. Phys. Status Solidi A, 2006, 4(203): R22—R24
[43] 邵守福(Shao S F), 董凡(Dong F), 张家良(Zhang J L). 电子元件与材料(Electro. Compo. Mater. ), 2010, 12: 21—24
[44] Xu L F, Qi P B, Song X P, Luo J X, Yang P C. J. Alloys Compd., 2011, 509: 7697—7701
[45] Luo F C, He J L, Hu J, Lin Y H. J. Am. Chem. Soc., 2006, 93(10): 3042—3045
[46] Kwon S, Huang C C, Patterson E A, Cann D P, Albert E F, Kwon S, Hackenberger W S, Cann D P. Mater. Lett., 2008, 62: 633—636
[47] Sulaiman M A, Hutagalunga S D, Ainb M F, Ahmad Z A. J. Alloys Compd., 2010, 493: 486—492
[48] Smith A E, Calvarese T G, Sleight A W, Subramanian M A. J. Solid State Chem., 2009, 182: 409—411
[49] Ardakani H A, Alizadeh M, Amini R, Ghazanfari M R. Ceram. Int., 2012, 38: 4217—4220
[50] Almeida A F L, Fechine P B A, Góesb J C, Valente M A, Miranda M A R, Sombrab A S B. Mater. Sci. Eng. B, 2004, 111: 113—123
[51] Yan Y, Jin L, Feng L. Mater. Sci. Eng. B, 2006, 130: 146—150
[52] Yu H T, Liu H X, Hao H, Luo D B, Cao M H. Mater. Lett., 2008, 62: 1353—1355
[53] Bender B A, Pan M J. Mater. Sci. Eng. B, 2005, 117: 339—347
[54] Zhang L, Shan X B, Wu P X, Song J L, Cheng Z Y. Ferroelectrics, 2010, 405: 92—97
[55] Shan X. Doctoral Dissertation of Auburn University, 2009
[56] Thomas P, Dwarakanath K, Varma R B K. Synth. Met., 2009, 159: 2128—2134
[57] Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B. Adv. Mater., 2009, 21: 2077—2082
[58] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H. Prog. Mater Sci., 2012, 57: 660—723
[59] Prakash B S, Varma K B R. Compos. Sci. Technol., 2007, 67: 2363—2368
[60] Thomas P, Varughese K T, Dwarakanath K, Varma K B R. Compos. Sci. Technol., 2010, 70: 539—545
[61] Shen Y P, Gu A J, Liang G Z, Yuan L. Composites: Part A, 2010, 41: 1668—1676
[62] Yang W H, Yu S H, Sun R, Ke S M, Huang H T, Du R X. J. Phys. D: Appl. Phys., 2011, 44: art. no. 475305

[1] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[2] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[3] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[4] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[5] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[6] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[7] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[8] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[9] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[10] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[11] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[12] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[13] Zhaoying Pan, Jianzhong Ma, Wenbo Zhang, Linfeng Wei. Flexible Conductive Polymer Composites in Strain Sensors* [J]. Progress in Chemistry, 2020, 32(10): 1592-1607.
[14] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[15] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.