中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 417-425 DOI: 10.7536/PC200603 Previous Articles   Next Articles

• Review •

Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers

Tianyong Zhang1, Wei Wu1,2, Jian Zhu2, Bin Li1,*(), Shuang Jiang1,*()   

  1. 1 School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
    2 School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Bin Li, Shuang Jiang
  • Supported by:
    the National Natural Science Foundation of China(21908161)
Richhtml ( 31 ) PDF ( 1034 ) Cited
Export

EndNote

Ris

BibTeX

Carbon-based materials have excellent conductivity, good stability, and low price. They are widely used in the preparation of stretchable conductive nanocomposites, and have tremendous application potential in the field of stretchable and wearable electronic devices, which has attracted lots of attention. This paper introduces the carbon-based materials, such as carbon black, carbon nanotubes and graphene. The preparation methods of these nanocomposites are also summarized, such as in-situ polymerization, melt blending and solution mixing, followed by the introduction of traditional and new printing technology. Then this paper analyzes the conductive mechanisms of composite materials including the percolation threshold, and focuses on their application in the field of stretchable sensors and stretchable energy storage devices. The shortcomings of the current research on stretchable conductive composites based on nano-carbon fillers are pointed out: poor dispersion of conductive fillers, unstable conductive network and inability to mass-produce, and the corresponding solutions are put forward. Finally, the applications of stretchable conductive composites based on nano-carbon fillers are prospected, including miniaturized, stretchable and wearable electronic devices.

Contents

1 Introduction

2 Conductive composites based on nano?carbon fillers

2.1 Carbon black

2.2 Carbon nanotube

2.3 Graphene

3 Preparation of stretchable conductive composites

3.1 Polymer

3.2 Preparation of conductive ink

3.3 Printing technology

4 Conduction mechanism of stretchable conductive composites based on nano?carbon fillers

5 Application

5.1 Stretchable sensors

5.2 Stretchable energy storage device

6 Conclusion

Fig.1 Carbon-based conductive filler
Fig.2 Conductivity of carbon black conductive nanocomposite material as a function of stretchability
Fig.3 Conductivity of CNT conductive nanocomposite material as a function of stretchability
Fig.4 Conductivity of graphene conductive nanocomposite material as a function of stretchability
Fig.5 Schematic representation of preparation methods of stretchable conductive composites
Fig.6 Schematic diagram of printing technology,(a) blade coating,(b) screen printing,(c) spray,(d) flexography printing,(e) silk screen printing,(f) inkjet printing,(g) 3D printing[36]
Fig.7 Schematic diagram of percolation theory[39]
Table 1 Application of carbon-based stretchable conductive nanocomposites in sensors
Table 2 Application of carbon-based stretchable conductive nanocomposites in energy storage
Fig.8 Properties and applications of conductive nanocomposites[18,20,25](a) stretchable active matrix display,(b) stretchable conductor,(c) stretchable light-emitting display
[1]
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9):1801072.
[2]
Wang Z Y, Gao W L, Zhang Q, Zheng K Q, Xu J W, Xu W, Shang E W, Jiang J, Zhang J, Liu Y. ACS Appl. Mater. Interfaces, 2019, 11(1):1344.
[3]
Lu N S, Lu C, Yang S X, Rogers J. Adv. Funct. Mater., 2012, 22(19):4044.
[4]
Wang B, Lee B K, Kwak M J, Lee D W. Rev. Sci. Instruments, 2013, 84(10):105005.
[5]
Feng Y, Zhu J. Sci. China Mater., 2019, 62(11):1679.
[6]
Song W J, Park J, Kim D H, Bae S, Kwak M J, Shin M, Kim S, Choi S, Jang J H, Shin T J, Kim S Y, Seo K, Park S. Adv. Energy Mater., 2018, 8(10):1702478.
[7]
Gu M S, Song W J, Hong J, Kim S Y, Shin T J, Kotov N A, Park S, Kim B S. Sci. Adv., 2019, 5:eaaw1879.
[8]
Kettlgruber G, Kaltenbrunner M, Siket C M, Moser R, Graz I M, Schwödiauer R, Bauer S. J. Mater. Chem. A, 2013, 1(18):5505.
[9]
Xu P, Wei B Q, Cao Z Y, Zheng J, Gong K, Li F X, Yu J Y, Li Q W, Lu W B, Byun J H, Kim B S, Yan Y S, Chou T W. ACS Nano, 2015, 9(6):6088.
[10]
Zhang N, Zhou W Y, Zhang Q, Luan P S, Cai L, Yang F, Zhang X, Fan Q X, Zhou W B, Xiao Z J, Gu X G, Chen H L, Li K W, Xiao S Q, Wang Y C, Liu H P, Xie S S. Nanoscale, 2015, 7(29):12492.
[11]
Zang J F, Cao C Y, Feng Y Y, Liu J, Zhao X H. Sci. Rep., 2014, 4:6492.
[12]
Chen Z B, Xi J T, Huang W, Yuen M M F. Sci. Rep., 2017, 7:10958.
[13]
Silva T A, Moraes F C, Janegitz B C, Fatibello-Filho O. J. Nanomater., 2017, 2017:1.
[14]
Niu X, Peng S, Liu L, Wen W, Sheng P. Adv. Mater., 2007, 19(18):2682.
[15]
Bhagavatheswaran E S, Parsekar M, Das A, Le H H, Wiessner S, Stöckelhuber K W, Schmaucks G, Heinrich G. J. Phys. Chem. C, 2015, 119(37):21723.
[16]
Mubarak N M, Abdullah E C, Jayakumar N S, Sahu J N. J. Ind. Eng. Chem., 2014, 20(4):1186.
[17]
Ying L S, bin Mohd Salleh M A, b Mohamed Yusoff H, Abdul Rashid S B, b Abd Razak J. J. Ind. Eng. Chem., 2011, 17(3):367.
[18]
Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K J, Someya T. Nat. Mater., 2009, 8(6):494.
[19]
Shin M K, Oh J, Lima M, Kozlov M E, Kim S J, Baughman R H. Adv. Mater., 2010, 22(24):2663.
[20]
Liu Z J, Qian Z H, Song J N, Zhang Y. Carbon, 2019, 149:181.
[21]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Phys. Rev. Lett., 2008, 100:016602.
[22]
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146(9/10):351.
[23]
Gao N, Fang X S. Chem. Rev., 2015, 115(16):8294.
[24]
Wang X L, Shi G Q. Energy Environ. Sci., 2015, 8(3):790.
[25]
Wang Z Y, Liu X, Shen X, Han N M, Wu Y, Zheng Q B, Jia J J, Wang N, Kim J K. Adv. Funct. Mater., 2018, 28(19):1707043.
[26]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6):424.
[27]
Sun F Q, Tian M W, Sun X T, Xu T L, Liu X Q, Zhu S F, Zhang X J, Qu L J. Nano Lett., 2019, 19(9):6592.
[28]
Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho H J, Algadi H, Al-Sayari S, Kim D E, Lee T. Adv. Funct. Mater., 2015, 25(21):3114.
[29]
Liang J J, Li L, Tong K, Ren Z, Hu W, Niu X F, Chen Y S, Pei Q B. ACS Nano, 2014, 8(2):1590.
[30]
Wang Z X, Volinsky A A, Gallant N D. J. Appl. Polym. Sci., 2014, 131(22):42050.
[31]
Choi S, Park J, Hyun W, Kim J, Kim J, Lee Y B, Song C, Hwang H J, Kim J H, Hyeon T, Kim D H. ACS Nano, 2015, 9(6):6626.
[32]
Hu H T, Wang X B, Wang J C, Wan L, Liu F M, Zheng H, Chen R, Xu C H. Chem. Phys. Lett., 2010, 484(4/6):247.
[33]
Duan L Y, Fu S R, Deng H, Zhang Q, Wang K, Chen F, Fu Q. J. Mater. Chem. A, 2014, 2(40):17085.
[34]
Uyor U O, Popoola A P, Popoola O, Aigbodion V S. Adv. Polym. Technol., 2018, 37(8):2838.
[35]
Hwang Y G, Lee S C, Jeong Y G. Fibers Polym., 2014, 15(5):1010.
[36]
Gaikwad A M, Arias A C, Steingart D A. Energy Technol., 2015, 3(4):305.
[37]
Xu Z B, Li Y, Sang L, Ding F, Liu X J. Power Sources, 2018, 42:157.
徐志彬, 李杨, 桑林, 丁飞, 刘兴江. 电源技术, 2018, 42:157.
[38]
Jason N N, Ho M D, Cheng W L. J. Mater. Chem. C, 2017, 5(24):5845.
[39]
Taherian R. ECS J. Solid State Sci. Technol., 2014, 3(6):M26.
[40]
Kirkpatrick S. Rev. Mod. Phys., 1973, 45(4):574.
[41]
Gao J F, Li Z M, Meng Q J, Yang Q. Mater. Lett., 2008, 62(20):3530.
[42]
Liu Y B, Lan T B, Zhang W F, Ding X K, Wei M D. J. Mater. Chem. A, 2014, 2(47):20133.
[43]
Sridharan K, Park T J. Appl. Catal. B: Environ., 2013, 134/135:174.
[44]
Wang W, Guo Y F, Sun Z F. Chem. Ind. Eng. Prog., 2015, 34(12):4259.
( 王望, 郭彦峰, 孙振锋. 化工进展, 2015,34(12):4259).
[45]
Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein H Y Y, Takei K, Javey A. Adv. Mater., 2016, 28(22):4397.
[46]
Jang H, Park Y J, Chen X, Das T, Kim M S, Ahn J H. Adv. Mater., 2016, 28(22):4184.
[47]
Boland C S, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira M S, Mobius M E, Young R J, Coleman J N. Science, 2016, 354(6317):1257.
[48]
Pan F, Chen S M, Li Y H, Tao Z C, Ye J L, Ni K, Yu H, Xiang B, Ren Y B, Qin F X, Yu S H, Zhu Y W. Adv. Funct. Mater., 2018, 28(40):1803221.
[49]
Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(12):12020.
[50]
Kong J H, Jang N S, Kim S H, Kim J M. Carbon, 2014, 77:199.
[51]
Yokota T, Inoue Y, Terakawa Y, Reeder J, Kaltenbrunner M, Ware T, Yang K J, Mabuchi K, Murakawa T, Sekino M, Voit W, Sekitani T, Someya T. PNAS, 2015, 112(47):14533.
[52]
Yue R R, Wang H C, Liu X P, Yang J B, Wang Z W. Mater. Rep., 2019, 33:3580.
岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 材料导报, 2019, 33:3580.
[53]
Hu L B, Pasta M, La Mantia F, Cui L F, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y. Nano Lett., 2010, 10(2):708.
[54]
Fan Y J, Meng X S, Li H Y, Kuang S Y, Zhang L, Wu Y, Wang Z L, Zhu G. Adv. Mater., 2017, 29(2):1603115.
[55]
Li H S, Ding Y, Ha H, Shi Y, Peng L L, Zhang X G, Ellison C J, Yu G H. Adv. Mater., 2017, 29(23):1700898.
[56]
Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv. Mater., 2018, 30(18):1800124.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[8] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[11] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[14] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.