中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1283-1292 DOI: 10.7536/PC190219 Previous Articles   Next Articles

Application of MXene and Its Composites in Sodium/Potassium Ion Batteries

Jiahui Li1,2, Jing Zhang1,2, Binglong Rui1,2, Li Lin1,2, Limin Chang1,2,**(), Ping Nie1,2,**()   

  1. 1. Key Laboratory of Preparation and Applications of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received: Online: Published:
  • Contact: Limin Chang, Ping Nie
  • About author:
    ** E-mail: (Limin Chang)
  • Supported by:
    The National Key R&D Program of China(No.SQ2017YFGH001474); The National Natural Science Foundation of China(No.51802111); The National Natural Science Foundation of China(No.51778268); The Natural Science Foundation of Jilin Province(No.20180101192JC); The Funding of Research Program of Jilin Normal University(No.JJKH20190997KJ)
Richhtml ( 72 ) PDF ( 2064 ) Cited
Export

EndNote

Ris

BibTeX

MXene has attracted considerable attention as a new type of two-dimensional layered structural materials owing to its high electron conductivity, large specific area, excellent mechanical properties and unique layered structure, which make it promising for application in energy storage, catalysis and adsorption. MXene and its composites have recently aroused intense interest for rechargeable batteries. Transition metal sulfides and oxides have the merits of high capacity, however suffering from issues of low conductivity, relatively large volume expansion and poor capacity retention during cycling. Combining MXene with these materials can not only increase the specific capacity, but also enhance electronic conductivity and solve the volume change during electrochemical cycling, finally achieving superior electrochemical properties. This review covers the key technological developments and latest progress of MXene composites in sodium ion batteries and potassium ion batteries. Starting from a brief introduction of the background of sodium ion batteries, potassium ion batteries and MXene, we mainly focus on research progress on synthesis and application in sodium ion batteries, including sulfides, oxides, and carbonaceous materials. The study on potassium ion batteries is still in its infancy. Current status of MXene and its composite in potassium ion batteries have also been summarized, also current challenges and future perspectives in the application of MXene materials are discussed.

Fig. 1 The number of published papers from Web of Science(Search time:Jan. 2019) with topics “MXene” and “batteries” from 2013 to 2018
Fig. 2 Schematic for the exfoliation process of MAX phases and formation of MXenes[17].Copyright 2012, American Chemical Society
Fig. 3 (a) Structure of MAX phases and the corresponding MXenes[18];(b) SEM image for Ti3AlC2 after HF treatment(Ti3C2Tx)[17].Copyright 2014, Wiley-VCH; Copyright 2012, American Chemical Society
Fig. 4 (a) Schematic of fabrication process for M’-c-Ti3C2Tx(M+=Li +, Na +, K+, TBA+)by flocculation using MOH;(b) SEM image of Na-c-Ti3C2Tx flocculated networks. Inset shows a higher magnification image;(c) HRTEM image showing stacked layers[49]. Copyright 2018, The Royal Society of Chemistry
Fig. 5 (a) Schematic illustration of the preparation of MXene/SnS2 composite by vacuum-assisted filtration;(b) SEM image of the MXene/SnS2-5∶1;(c, d) HRTEM images of CoS/MXene;(e) The synthesis process of CoS/MXene composite;(f) Cycling performance of MXene/SnS2 10∶1, MXene/SnS2 5∶1, MXene/SnS2 2∶1 and MXene;(g) Rate performance of CoS/MXene at various current densities[43, 44].Copyright 2018, Elsevier; Copyright 2019, Elsevier
Fig. 6 (a, b) TEM images of CoNiO2/Ti3C2Tx;(c) Cycling performance of CoNiO2/Ti3C2Tx composite;(d) Charge-transfer mechanism of CoNiO2/Ti3C2Tx composite[63]. Copyright 2018, Elsevier
Fig. 7 (a) Schematic of the fabrication of M-NTO or M-KTO nanoribbons;(b, c) SEM images of M-KTO(The inset is the photograph of M-KTO powder);(d) HRTEM image of M-KTO(The inset is the corresponding SAED patterns);(e) CV of M-KTO measured at 0.1 mV·s-1;(f) Galvanostatic charge and discharge curves of M-KTO cycled at different current densities[80]. Copyright 2017, American Chemical Society
[1]
Xie X, Wang S, Kretschme K, Wang G . J. Colloid Interface Sci., 2017, 499:17. https://www.ncbi.nlm.nih.gov/pubmed/28363101

doi: 10.1016/j.jcis.2017.03.077 pmid: 28363101
[2]
Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K . J. Mater. Chem A, 2017, 5:24564.
[3]
Xiong D, Li X, Bai Z, Lu S . Small, 2018, 14:1703419.
[4]
聂平(Nie P), 徐桂银(Xu G Y), 蒋江民(Jiang J M), 王江(Wang J), 付瑞瑞(Fu R R), 方姗(Fang S), 窦辉(Dou H), 张校刚(Zhang X G) . 储能科学与技术(Energy Storage Science and Technology), 2017, 6:889.
[5]
Nie P, Liu X, Fu R, Wu Y, Jiang J, Dou H, Zhang X . ACS Energy Lett., 2017, 2:1279.
[6]
Nie P, Le Z, Chen G, Liu D, Liu X, Wu H B, Xu P, Li X, Liu F, Chang L, Zhang X, Lu Y . Small, 2018, 14:1800635.
[7]
Nie P, Xu G Y, Jiang J M, Dou H, Wu Y T, Zhang Y D, Wang J, Shi M Y, Fu R R, Zhang X G . Small Methods, 2018, 2:1700272.
[8]
Nie P, Yuan J, Wang J, Le Z, Xu G, Hao L, Pang G, Wu Y, Dou H, Yan X, Zhang X . ACS Appl. Mater. Interfaces, 2017, 9:20306. https://www.ncbi.nlm.nih.gov/pubmed/28570041

doi: 10.1021/acsami.7b05178 pmid: 28570041
[9]
Wang Q, Xu J, Zhang W, Mao M, Wei Z, Wang L, Cui C, Zhu Y, Ma J . J. Mater. Chem.A, 2018, 6:8815.
[10]
Liu Y, Liu X, Wang T, Fan L Z, Jiao L . Sustainable Energy Fuels, 2017, 1:986.
[11]
Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S . Chem. Rec., 2018, 18:459. https://www.ncbi.nlm.nih.gov/pubmed/29442429

doi: 10.1002/tcr.201700057 pmid: 29442429
[12]
Wang N, Chu C, Xu X, Du Y, Yang J, Bai Z, Dou S . Adv. Energy Mater., 2018, 8:1801888.
[13]
Cao W, Zhang E, Wang J, Liu Z, Ge J, Yu X, Yang H, Lu B . Electrochim. Acta, 2019, 293:364.
[14]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004, 306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896 pmid: 15499015
[15]
Zhang Y, Zhang N, Ge C . Mater., 2018, 11:2281.
[16]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W . Adv. Mater., 2011, 23:4248. https://www.ncbi.nlm.nih.gov/pubmed/21861270

doi: 10.1002/adma.201102306 pmid: 21861270
[17]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W . ACS Nano, 2012, 6:1322. https://www.ncbi.nlm.nih.gov/pubmed/22279971

doi: 10.1021/nn204153h pmid: 22279971
[18]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y . Adv. Mater., 2014, 26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138 pmid: 24357390
[19]
Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y . Electrochem. Commun., 2012, 16:61.
[20]
Pang J, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z, Rummeli M H . Chem. Soc. Rev., 2019, 48:72. https://www.ncbi.nlm.nih.gov/pubmed/30387794

doi: 10.1039/c8cs00324f pmid: 30387794
[21]
姚送送(Yao S S), 李诺(Li N), 叶红齐(Ye H Q), 韩凯(Han K) . 化学进展(Progress in Chemistry), 2018, 30:932.
[22]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y, . Nat. Commun., 2013, 4:1716. https://www.ncbi.nlm.nih.gov/pubmed/23591883

doi: 10.1038/ncomms2664 pmid: 23591883
[23]
张建峰(Zhang J F), 曹惠杨(Cao H Y), 王红兵(Wang H B) . 无机材料学报(Journal of Inorganic Materials), 2017, 32:561.
[24]
Anasori B, Lukatskaya M R, Gogotsi Y . Nat. Rev. Mater., 2017, 2:16098.
[25]
Tang X, Guo X, Wu W, Wang G . Adv. Energy Mater., 2018, 8:1801897.
[26]
Okubo M, Sugahara A, Kajiyama S, Yamada A . Acc. Chem. Res., 2018, 51:591. https://www.ncbi.nlm.nih.gov/pubmed/29469564

doi: 10.1021/acs.accounts.7b00481 pmid: 29469564
[27]
Zhang X, Zhang Z, Zhou Z . J. Energy Chem., 2018, 27:73. https://linkinghub.elsevier.com/retrieve/pii/S2095495617306551

doi: 10.1016/j.jechem.2017.08.004
[28]
Zhao J, Zhang L, Xie X Y, Li X, Ma Y, Liu Q, Fang W H, Shi X, Cui G, Sun X . J. Mater. Chem. A, 2018, 6:24031.
[29]
Wang Y, Wang J, Han G, Du C, Deng Q, Gao Y, Yin G, Song Y . Ceram. Int., 2019, 45:2411.
[30]
Zhu K, Zhang H, Ye K, Zhao W, Yan J, Cheng K, Wang G, Yang B, Cao D . ChemElectroChem, 2017, 4:3018.
[31]
Kurra N, Alhabeb M, Maleski K, Wang C H, Alshareef H N, Gogotsi Y . ACS Energy Lett., 2018, 3:2094.
[32]
Zhang C, Nicolosi V . Energy Storage Materials, 2019, 16:102.
[33]
Sun S, Liao C, Hafez A M, Zhu H, Wu S . Chem. Eng. J., 2018, 338:27.
[34]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W . Chem. Mater., 2014, 26:2374. https://www.ncbi.nlm.nih.gov/pubmed/24741204

doi: 10.1021/cm500641a pmid: 24741204
[35]
Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F . Angew. Chem. Int. Ed., 2016, 55:14569. https://www.ncbi.nlm.nih.gov/pubmed/27774723

doi: 10.1002/anie.201606643 pmid: 27774723
[36]
Li G, Tan L, Zhang Y, Wu B, Li L . Langmuir, 2017, 33:9000. https://www.ncbi.nlm.nih.gov/pubmed/28805394

doi: 10.1021/acs.langmuir.7b01339 pmid: 28805394
[37]
Barsoum M W . Prog. Solid State Chem., 2000, 28:201.
[38]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C . J. Am. Chem. Soc., 2014, 136:6385. https://www.ncbi.nlm.nih.gov/pubmed/24678996

doi: 10.1021/ja501520b pmid: 24678996
[39]
Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M, Yamada A . ACS Nano, 2016, 10:3334. https://www.ncbi.nlm.nih.gov/pubmed/26891421

doi: 10.1021/acsnano.5b06958 pmid: 26891421
[40]
Osti N C, Naguib M, Ostadhossein A, Xie Y, Kent P R C, Dyatkin B, Rother G, Heller W T, van Duin A C T, Gogotsi Y, Mamontov E . ACS Appl. Mater. Interfaces, 2016, 8:8859. https://www.ncbi.nlm.nih.gov/pubmed/27010763

doi: 10.1021/acsami.6b01490 pmid: 27010763
[41]
Er D, Li J, Naguib M, Gogotsi Y . ACS Appl. Mater. Interfaces, 2014, 6:11173. https://www.ncbi.nlm.nih.gov/pubmed/24979179

doi: 10.1021/am501144q pmid: 24979179
[42]
Eames C, Islam M S . J. Am. Chem. Soc., 2014, 136:16270. https://www.ncbi.nlm.nih.gov/pubmed/25310601

doi: 10.1021/ja508154e pmid: 25310601
[43]
Zhang Y, Zhan R, Xu Q, Liu H, Tao M, Luo Y, Bao S, Li C, Xu M . Chem. Eng. J., 2019, 357:220.
[44]
Wu Y, Nie P, Wu L, Dou H, Zhang X . Chem. Eng. J., 2018, 334:932.
[45]
Wu Y, Nie P, Jiang J, Ding B, Dou H, Zhang X . ChemElectroChem, 2017, 4:1560.
[46]
Li X, Wang C, Cao Y, Wang G . Chem. - Asian J., 2018, 13:2742. https://www.ncbi.nlm.nih.gov/pubmed/30047591

doi: 10.1002/asia.201800543 pmid: 30047591
[47]
Yang E, Ji H, Kim J, Kim H, Jung Y . Phys. Chem. Chem. Phys., 2015, 17:5000. https://www.ncbi.nlm.nih.gov/pubmed/25591787

doi: 10.1039/c4cp05140h pmid: 25591787
[48]
Wu Y, Nie P, Wang J, Dou H . ACS Appl. Mater. Interfaces, 2017, 9:39610. https://www.ncbi.nlm.nih.gov/pubmed/29039906

doi: 10.1021/acsami.7b12155 pmid: 29039906
[49]
Zhao D, Clites M, Ying G, Kota S, Wang J, Natu V, Wang X, Pomerantseva E, Cao M, Barsoum M W . Chem. Commun., 2018, 54:4533. https://www.ncbi.nlm.nih.gov/pubmed/29663005

doi: 10.1039/c8cc00649k pmid: 29663005
[50]
Lv G, Wang J, Shi Z, Fan L . Mater. Lett., 2018, 219:45.
[51]
Zhao M Q, Xie X, Ren C E, Makaryan T, Anasori B, Wang G, Gogotsi Y . Adv. Mater., 2017, 29:1702410.
[52]
Wang M, Huang Y, Zhu Y, Wu X, Zhang N, Zhang H . J. Alloys Compd., 2019, 774:601.
[53]
Li X, Zhao Y, Ya Q, Guan L . Electrochim. Acta, 2018, 270:1.
[54]
Zhang Y, Guo B, Hu L, Xu Q, Li Y, Liu D, Xu M . J. Alloys Compd., 2018, 732:448.
[55]
Xie X, Makaryan T, Zhao M, Van Aken K L, Gogotsi Y, Wang G, . Adv. Energy Mater., 2016, 6:1502161.
[56]
Wu X, Wang Z, Yu M, Xiu L, Qiu J . Adv. Mater., 2017, 29:1607017.
[57]
Du G, Tao M, Gao W, Zhan Y, Zhan R, Bao S J, Xu M . Inorg. Chem. Front., 2019, 6:117.
[58]
Wang Z, Cheng Y, Li Q, Chang L, Wang L . J. Power Sources, 2018, 389:214.
[59]
Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Chang S, Wang G . J. Mater. Chem. A, 2017, 5:12445. http://xlink.rsc.org/?DOI=C7TA02689G

doi: 10.1039/C7TA02689G
[60]
Wang J Z, Zhou J P, Guo Z Q, Lei Y X, Hassan Q U . Cryst. Res. Technol., 2018, 53:1700153.
[61]
Huang J, Meng R, Zu L, Wang Z, Feng N, Yang Z, Yu Y, Yang J . Nano Energy, 2018, 46:20.
[62]
Chang L, Wang K, Zhu S, Huang L, He Z, Chen M, Shao H, Wang J . Mater. Res. Bull., 2017, 96:379.
[63]
Tao M, Zhang Y, Zhan R, Guo B, Xu Q, Xu M . Mater. Lett., 2018, 230:173.
[64]
聂平(Nie P), 申来法(Shen L F), 陈琳(Chen L), 苏晓飞(Su X F), 张校刚(Zhang X G), 李洪森(Li H S) . 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27:2123.
[65]
Hong M, Su Y, Zhou C, Yao L, Hu J, Yang Z, Zhang L, Zhou Z, Hu N, Zhang Y . J. Alloys Compd., 2019, 770:116.
[66]
Mohan R, Paulose R . J. Electron. Mater., 2018, 47:6878.
[67]
Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum M W, Gogotsi Y . ChemElectroChem, 2016, 3:689.
[68]
Xie X, Zhao M Q, Anasori B, Maleski K, Ren C E, Li J, Byles B W, Pomerantseva E, Wang G, Gogotsi Y . Nano Energy, 2016, 26:513.
[69]
Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F . Mater. Lett., 2018, 214:84.
[70]
Zhang T, Jiang X, Li G, Yao Q, Lee J Y . ChemNanoMat, 2018, 4:56.
[71]
Jun B M, Kim S, Heo J, Park C M, Her N, Jang M, Huang Y, Han J, Yoon Y . Nano Res., 2019, 12:471.
[72]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N . Adv. Energy Mater., 2017, 7:1602911.
[73]
Kim H, Kim J C, Bianchini M, Seo D H, Rodriguez-Garcia J, Ceder G . Adv. Energy Mater., 2018, 8:1702384.
[74]
张鼎(Zhang D), 燕永旺(Yan Y W), 史文静(Shi W J), 赵小敏(Zhao X M), 刘世斌(Liu S B), 王晓敏(Wang X M) . 化工进展(Chemical Industry and Engineering Progress), 2018, 37(10):3772.
[75]
李文挺(Li W T), 安胜利(An S L), 邱新平(Qiu X P) . 储能科学与技术(Energy Storage Science and Technology), 2018, 7(3):365.
[76]
刘梦云(Liu M Y), 谷天天(Gu T T), 周敏(Zhou M), 王康丽(Wang K L), 程时杰(Chen S J), 蒋凯(Jiang K) . 储能科学与技术(Energy Storage Science and Technology), 2018, 7(6):1171.
[77]
Lian P, Dong Y, Wu Z S, Zheng S, Wang X, Sen W, Sun C, Qin J, Shi X, Bao X . Nano Energy, 2017, 40:1.
[78]
Liu Y, Li Y, Li F, Liu Y, Yuan X, Zhang L, Guo S . Electrochim. Acta, 2019, 295:599.
[79]
Zeng C, Xie F, Yang X, Jaroniec M, Zhang L, Qiao S Z . Angew. Chem., Int. Ed., 2018, 57:8540. https://www.ncbi.nlm.nih.gov/pubmed/29722102

doi: 10.1002/anie.201803511 pmid: 29722102
[80]
Dong Y, Wu Z S, Zheng S, Wang X, Qin J, Wang S, Shi X, Bao X . ACS Nano, 2017, 11:4792. https://www.ncbi.nlm.nih.gov/pubmed/28460161

doi: 10.1021/acsnano.7b01165 pmid: 28460161
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[7] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[8] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[9] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[10] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[11] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[12] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[13] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[14] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[15] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.