中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1592-1607 DOI: 10.7536/PC200322 Previous Articles   Next Articles

Flexible Conductive Polymer Composites in Strain Sensors*

Zhaoying Pan1, Jianzhong Ma1,**(), Wenbo Zhang2,**(), Linfeng Wei3   

  1. 1. National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
    2. College of Chemistry and Chemical Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi’an 710021, China
    3. School of Materials Science Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
  • Received: Revised: Online: Published:
  • Contact: Jianzhong Ma, Wenbo Zhang
  • About author:
    **e-mail:(Jianzhong Ma)
  • Supported by:
    National Natural Science Foundation of China(21908141); National Natural Science Foundation of China(52073164); Key Research and Development Program of Shaanxi Province(2019GY-171)
Richhtml ( 76 ) PDF ( 1406 ) Cited
Export

EndNote

Ris

BibTeX

The development of flexible and wearable sensors in the past decade has made them have good application prospects in personalized medicine, human-computer interaction and intelligent robots. Flexible conductive polymer composite materials composed of conductive materials and elastic polymers, which have high stretchability, excellent flexibility, durability and other characteristics, can be used to prepare flexible sensors with wide sensing range and high sensitivity. This article reviews the composite types (filled type strain sensors, sandwich type strain sensors, adsorption type strain sensors) and sensing mechanisms (tunneling effect, disconnection mechanism, crack propagation) of stretchable strain sensors based on flexible conductive polymer composite materials. The structure design of the composite materials used for the sensor is introduced in detail, including the internal structure (double percolation structure, segregation structure, porous structure, and “brick-and-mortar” structure), surface structure (wrinkles structure and microcrack structure) and macro structure (fiber structure, net structure, film structure). The internal structure design can reduce the materials’ percolation threshold, the surface structure design can improve the sensor performance, and each macro structure has its own characteristics. Finally, the developments of the sensors in material selection, preparation technology, structure design, compound mode, additional performance and application direction are prospected.

Contents

1 Introduction

2 Types of strain sensors based on flexible conductive polymer composites

2.1 Filled-type strain sensors

2.2 Sandwich-type strain sensors

2.3 Adsorption-type strain sensors

3 Internal structures of flexible conductive polymer composites for strain sensors

3.1 Double percolation structure

3.2 Segregation structure

3.3 Porous structure

3.4 “Brick-and-mortar” structure

4 Surface structures of flexible conductive polymer composites for strain sensors

4.1 Wrinkles structure

4.2 Microcrack structure

5 Macro structures of flexible conductive polymer composites for strain sensors

5.1 Fiber structure

5.2 Net structure

5.3 Film structure

6 Sensing mechanisms of strain sensors based on flexible conductive polymer composites

6.1 Tunneling effect

6.2 Disconnection mechanism

6.3 Crack propagation

7 Conclusion and outlook

Fig.1 Schematic diagram of the filled type strain sensor fabrication process[34]. Copyright 2018, American Chemical Society
Fig.2 Fabrication process of sandwich type BGB strain sensor[45]. Copyright 2020, American Chemical Society
Fig.3 Fabrication process of adsorption type strain sensor based on rGOPEB[51]. Copyright 2019, John Wiley and Sons Ltd
Fig.4 TEM images (a and b) and structure diagram (c) of SBR/NR-GE double percolation network. Region A corresponds to the SBR phase and region B represents the NR phase containing f-GE[53]. Copyright 2016, Royal Society of Chemistry
Fig.5 Structure diagram and SEM image of segregation structure of PDMS/MWCNTs composite material[57]. Copyright 2017, Royal Society of Chemistry
Fig.6 Structure diagram (a) and SEM images (b,c) of porous structure of GPN-PDMS composite materials[72]. Copyright 2016, American Chemical Society
Fig.7 Schematic illustration (a) and SEM image (b) of the Ti3C2Tx-AgNW-PDA/Ni2+ nanocomposite film based on the “brick-and-mortar” architecture[76]. Copyright 2018, American Chemical Society
Table 1 The internal structure of different composites and their advantages and disadvantages
Table 2 The surface structure of different composites and their advantages and disadvantages
Fig.8 (a) SEM images and illustrations of typical hierarchical wrinkles in the rGO layer deposited on the released PEA substrate; (b) Wrinkles structure changes under different strain of HWETC and SEM images are shown of short- and long-period wrinkles under the different HWETC strains[85]. Copyright 2016, Wiley-Blackwell
Fig.9 Crack structure diagram and SEM image of CCTSS[92]. Copyright 2019, American Chemical Society
Table 3 The macro structure of different composites and their advantages and disadvantages
Fig.10 Optical photos (a, b) and SEM images (c, d) of coaxial fiber and response (e) of sensor in monitoring finger bending[96]. Copyright 2018, American Chemical Society
Fig.11 Single jersey textiles knitted by using (a) single- and (b) four-ply yarn of MXene/PU composite fiber and their schematic illustrations. (c) Photos of Elbow sleeve knitted by using four-ply yarn of MXene/PU composite fiber as-knitted on an elbow at straight and bent conditions and its strain sensing response curve[101]. Copyright 2020, Wiley-VCH Verlag
Fig.12 (a) Optical photo of thin film strain sensor; (d) Obstructive sleep apnea test by the human subject[104]. Copyright 2019, American Chemical Society
Fig.13 Schematic view of CNT conductive network including tunneling effect[109]. Copyright 2014, American Institute of Physics
Fig.14 Schematic diagram of separation mechanism of graphite/silk fiber sensor and the equivalent electrical diagram[112]. Copyright 2016, American Chemical Society
Fig.15 Crack propagation mechanism of CNTs films/PDMS strain sensors. (a) Series of optical images of the CNTs films/PDMS composite being stretched from 0% to 60%; (b) Chinese paper cuttings simulating the change of crack morphology from unstrained to strained states; (c) Average gap width versus strain loading; (d) The resistance model of a sensing unit[113]. Copyright 2018, Royal Society of Chemistry
[1]
魏向东(Wei X D). 郑州大学硕士论文 (Master Dissertation of Zhengzhou University), 2018.
[2]
Sui C, Yang Y, Headrick R J, Pan Z, Wu J, Zhang J, Jia S, Li X, Gao W, Dewey O S, Wang C, He X, Kono J C, Pasquali P, Lou J. Nanoscale, 2018,10:14938.

pmid: 30046774
[3]
高沐(Gao M), 夏志东(XiaZ D), 陈婧晗(ChenJ H), 高园(GaoY), 王金淑(Wang J S). 复合材料学报 (Acta Materiae Compositae Sinica), 2019,36(12):2756.
[4]
Natarajan T S, Eshwaran S B, Stöckelhuber K W, Wießner S, Pötschke P, Heinrich G, Das A. ACS Appl. Mater. Interfaces, 2017,9:4860. doi: 10.1021/acsami.6b13074

pmid: 28094912
[5]
程芳华(Cheng F H), 于云飞(YuY F), 高嘉辰(GaoJ C), 代坤(DaiK), 刘春太(Liu C T). 塑料科技 (Plastics Science and Technology), 2018,46(9):56.
[6]
Wu J, Wang H, Su Z, Zhang M, Hu X, Wang Y, Wang Z, Zhong B, Zhou W, Liu P, Xing G. ACS Appl. Mater. Interfaces, 2017,9:38745. doi: 10.1021/acsami.7b10316

pmid: 29037040
[7]
李贺(Li H), 刘白玲(LiuB L), 高利珍(GaoL Z), 瞿美臻(ZhaiM Z), 于作龙(Yu Z L). 合成化学 (Chinese Journal of Synthetic Chemistry), 2002,10(3):197.
[8]
Zhao B, Zeng S, Li X, Guo X, Bai Z, Fan B, Zhang R. Journal of Materials Chemistry C, 2020,8:500.
[9]
张力(Zhang L), 吴俊涛(WuJ T), 江雷(JiangL). 化学进展 (Progress in Chemistry), 2014,26(4):560.
[10]
Wei L, Ma J, Zhang W, Liu C, Bao Y. Progress in Organic Coatings, 2018,122:64.
[11]
Zhang W, Wei L, Ma J, Bai S. Composites Part A: Applied Science and Manufacturing, 2020,132:105838. doi: 10.1016/j.compositesa.2020.105838
[12]
毛秉鑫(Mao B X). 长春理工大学硕士论文 (Master Dissertation of Changchun University of Science and Technology), 2017.
[13]
Ma Z, Kang S, Ma J, Shao L, Wei A, Liang C, Gu J, Yang B, Dong D, Wei L, Ji Z. ACS Nano, 2019,13:7578.

pmid: 31244039
[14]
Guo Q, Zhang X, Zhao F, Song Q, Su G, Tan Y, Tao Q, Zhou T, Yu Y, Zhou Z, Lu C. ACS Nano, 2020,14:2788.

pmid: 32045216
[15]
Li H, Du Z Q. ACS Appl. Mater. Interfaces, 2019,11:45930.
[16]
Hu C, Li Z, Wang Y, Gao J C, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z. Journal of Materials Chemistry C, 2017,5:2318.
[17]
Zhao S, Lou D, Zhan P, Li G, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z. Journal of Materials Chemistry C, 2017,5:8233.
[18]
Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D H, Zhu H. Adv. Funct. Mater., 2014,24:4666.
[19]
Huang W, Dai K, Zhai Y, Liu H, Zhan P, Gao J, Zheng G, Liu C, Shen C. ACS Appl. Mater. Interfaces, 2017,9:42266.

pmid: 29131573
[20]
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. Science, 2008,321:1468.
[21]
Pang H, Xu L, Yan D X, Li Z M. Progress in Polymer Science, 2014,39:1908.
[22]
Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q. Progress in Polymer Science, 2014,39:627.
[23]
任秦博(Ren Q B), 王景平(WangJ P), 杨立(YangL), 李翔(LiX), 王学川(Wang X C). 材料导报 (Materials Reports), 2020,34(1):1080.
[24]
熊耀旭(Xiong Y X), 胡友根(HuY G), 朱朋莉(ZhuP L), 孙蓉(SunR), 汪正平(Wang Z P). 化学进展 (Progress in Chemistry), 2019,31(6):800.
[25]
Mattmann C, Clemens F, Tröster G. Sensors, 2008,8:3719.

pmid: 27879904
[26]
Wei L, Zhang W, Ma J, Bai S, Ren Y, Liu C, Simion D, Qin J. Carbon, 2019,149:679.
[27]
Ke K, Pötschke P, Wiegand N, Masuda Z, Fukunaga H. ACS Appl. Mater. Interfaces, 2016,8:14190.

pmid: 27171017
[28]
Costa P, Maceiras A, San Sebastián M, García-Astrain C, Vilascd J L, Lanceros-Mendezce S. Journal of Materials Chemistry C, 2018,6:10580.
[29]
Lin Y, Dong X, Liu S, Chen S, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2016,8:24143.

pmid: 27552175
[30]
Zhao B, Deng J, Zhao C, Wang C, Chen Y G, Hamidinejad M, Li R, Park C B. Journal of Materials Chemistry C, 2020,8:58.
[31]
Oh J Y, Jun G H, Jin S, Ryu H J, Hong S H. ACS Appl. Mater. Interfaces, 2016,8:3319.

pmid: 26784473
[32]
Zhang R, Ying C, Gao H, Liu Q, Fu X, Hu S F. Composites Science and Technology, 2019,171:218.
[33]
Costa P, Maceiras A, San Sebastián M, Astrain C G, Vilascd J L, Mendezc S L. Journal of Materials Chemistry C, 2018,6:10580.
[34]
Oh J, Yang J C, Kim J O, Park H, Kwon S Y, Lee S, Sim J Y, Oh H W, Kim J, Park S. ACS Nano, 2018,12:7546.

pmid: 29995382
[35]
王瑞荣(Wang R R), 侯鹏飞(Hou P F). 微纳电子技术 (Micronanoelectronic Technology), 2019,56(3):59.
[36]
Zhang F, Wu S, Peng S, Sha Z, Wang C H. Composites Science and Technology, 2019,172:7.
[37]
Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X. ACS Nano, 2018,12:56.
[38]
霍庆生(Huo Q S), 金嘉琦(JinJ Q). 王晓强(Wang X Q), 卢少微(LuS W), 马克明(MaK M), 张璐(Zhang L), 徐涛(Xu T). 工程科学学报 (Chinese Journal of Engineering), 2018,40(6):714.
[39]
Park D W, Kim B S, Park S, Choi W J, Yang C S, Lee J O. Journal of the Korean Physical Society, 2014,64:488.
[40]
赵木森(Zhao M S), 于海波(YuH B), 孙丽娜(SunL N), 周培林(ZhouP L), 邹旿昊(Zou W H), 刘连庆(Liu L Q). 中国科学 (Scientia Sinica), 2019,49(7):851.
[41]
Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Adv. Mater., 2014,26:6307. doi: 10.1002/adma.201400334

pmid: 24934143
[42]
Lu L, Wei X, Zhang Y, Zheng G, Dai K, Liu C, Shen C. Journal of Materials Chemistry C, 2017,5:7035.
[43]
Wang Q, Jian M, Wang C, Zhang Y Y. Adv. Funct. Mater., 2017,27:1605657.
[44]
Hwang B U, Lee J H, Trung T Q, Roh E, Kim D I, Kim S W, Lee N E. ACS Nano, 2015,9:8801.

pmid: 26277994
[45]
Li Y, He T, Shi L, Wang R R, Sun J. ACS Appl. Mater. Interfaces, 2020,12:17691.
[46]
Yang Y, Shi L, Cao Z, Wang R R, Sun J. Adv. Funct. Mater., 2019,29:1807882.
[47]
Cui X, Zhu G, Pan Y, Shao Q, Zhao C, Dong M, Zhang Y, Guo Z. Polymer, 2018,138:203.
[48]
Wu Y, Liu H, Chen S, Dong X, Wang P, Liu S, Lin Y, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2017,9:20098. doi: 10.1021/acsami.7b04605

pmid: 28541651
[49]
Wang Y, Hao J, Huang Z, Zheng G, Dai K, Liu C, Shen C. Carbon, 2018,126:360.
[50]
Yang K, Yin F, Xia D, Peng H, Yang J, Yuan W. Nanoscale, 2019,11:9949.

pmid: 31070651
[51]
Reddy K R, Gandla S, Gupta D. Adv. Mater. Interfaces, 2019,6:1900409.
[52]
Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C T, Shen C, Guo Z. Journal of Materials Chemistry C, 2018,6:2258.
[53]
Lin Y, Liu S, Chen S, Wei Y, Dong X, Liu L. Journal of Materials Chemistry C, 2016,4:6345.
[54]
Duan L, D’hooge D R, Spoerk M, Cornillie P, Cardon L. ACS Appl. Mater. Interfaces, 2018,10:22678. doi: 10.1021/acsami.8b03967

pmid: 29808670
[55]
Duan L, Spoerk M, Wieme T, Cornillie P, Xia H, Zhang J, Cardon L, D'hooge D R. Composites Science and Technology, 2019,171:78.
[56]
Wang S, Zhang X, Wu X, Lu C. Soft Matter, 2016,12:845.
[57]
Wang M, Zhang K, Dai X, Yin L, Guo J, Liu H, Li G, Tan Y, Zeng J, Guo Z. Nanoscale, 2017,9:11017.

pmid: 28574065
[58]
Sang Z, Ke K, Manas-Zloczower I. ACS Appl. Mater. Interfaces, 2018,10:36483.

pmid: 30280558
[59]
Sang Z, Ke K, Manas-Zloczower I. ACS Applied Polymer Materials, 2019,1:714.
[60]
Wang Y, Gong S, Wang S J, Yang X, Ling Y, Yap L W, Dong D, Simon G P, Cheng W. ACS Nano, 2018,12:9742.

pmid: 30226045
[61]
Oh J Y, Lee D, Hong S H. ACS Appl. Mater. Interfaces, 2018,10:21666.

pmid: 29873236
[62]
Zhai T, Zheng Q, Cai Z, Turng L, Xia H, Gong S. ACS Appl. Mater. Interfaces, 2015,7:7436. doi: 10.1021/acsami.5b01679
[63]
Yue X, Jia Y, Wang X, Zhou K, Zhai W, Zheng G, Dai K, Mi L, Liu C, Shen C. Composites Science and Technology, 2020,189:108038.
[64]
Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J, Yuan Y, He X, Li B. ACS Nano, 2015,9:8933. doi: 10.1021/acsnano.5b02781

pmid: 26301319
[65]
Li J, Zhao S, Zeng X, Huang W, Gong Z, Zhang G, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016,8:18954. doi: 10.1021/acsami.6b05088

pmid: 27384320
[66]
Song D, Li X, Li X, Jia X, Min P, Yu Z. Journal of Colloid and Interface Science, 2019,555:751.

pmid: 31419625
[67]
Han F, Li J, Zhao S, Zhang Y, Huang W, Zhang G, Sun R, Wong C. Journal of Materials Chemistry C, 2017,5:10167.
[68]
Yu X, Li Y, Zhu W, Huang P, Wang T, Ning H, Fu S. Nanoscale, 2017,9:6680.

pmid: 28485457
[69]
Yu G, Yan X, Yu M, Jia M, Pan W, He X, Han W, Zhang Z, Yu L, Long Y. Nanoscale, 2016,8:2944. doi: 10.1039/c5nr08618c

pmid: 26781815
[70]
Wu S, Ladani R B, Zhang J, Ghorbani K, Zhang X, Mouritz A P, Kinloch A G, Wang C. ACS Appl. Mater. Interfaces, 2016,8:24853. doi: 10.1021/acsami.6b06012

pmid: 27572689
[71]
Wu S, Peng S, Wang C. Sensors and Actuators A: Physical, 2018,279:90.
[72]
Pang Y, Tian H, Tao L, Li Y, Wang X, Deng N, Yang Y, Ren. T. ACS Appl. Mater. Interfaces, 2016,8:26458.

pmid: 27684520
[73]
Wang X, Sun H, Yue X, Yu Y, Zheng G, Dai K, Liu C, Shen C. Composites Science and Technology, 2018,168:126.
[74]
Long Y, He P, Xu R, Hayasaka T, Shao Z, Zhong J, Lin L. Carbon, 2020,157:594.
[75]
Duan J, Gong S, Gao Y, Xie X, Jiang L, Cheng Q. ACS Appl. Mater. Interfaces, 2016,8:10545.

pmid: 27054460
[76]
Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y S. ACS Nano, 2018,13:649.

pmid: 30566329
[77]
Meng X, Zhao S, Zhang Z, Zhang R, Li J, Leng J, Cao D, Zhang G, Sun R. Journal of Materials Chemistry C, 2019,7:7061.
[78]
Yang S, Khare K, Lin P C. Adv. Funct. Mater., 2010,20:2550.
[79]
Lacour S P, Wagner S, Huang Z, Suo Z. Applied Physics letters, 2003,82:2404.
[80]
Park S J, Kim J, Chu M, Khine M. Adv. Mater. Technologies, 2016,1:1600053.
[81]
Wang X, Hu H, Shen Y, Zhou X, Zheng Z. Adv. Mater., 2011,23:3090. doi: 10.1002/adma.201101120

pmid: 21598315
[82]
Wei Y, Chen S, Yuan X, Wang P, Liu L. Adv. Funct. Mater., 2016,26:5078.
[83]
Ho X, Nie Tey J, Liu W, Cheng C K, Wei J. Journal of Applied Physics, 2013,113:044311.
[84]
Kim K K, Hong S, Cho H M, Lee J, Suh Y D, Ham J, Ko S H. Nano Lett., 2015,15:5240. doi: 10.1021/acs.nanolett.5b01505

pmid: 26150011
[85]
Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M. Adv. Mater., 2016,28:9491. doi: 10.1002/adma.201603395

pmid: 27629525
[86]
Han Z, Liu L, Zhang J, Han Q, Wang K, Song H, Wang Z, Jiao Z, Niu S, Ren L. Nanoscale, 2018,10:15178. doi: 10.1039/c8nr02514b

pmid: 29892757
[87]
Barth F G. Current opinion in neurobiology, 2004,14:415.

pmid: 15321061
[88]
Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T, Choi M. Nature, 2014,516:222. doi: 10.1038/nature14002

pmid: 25503234
[89]
Park B, Kim J, Kang D, Jeong C, Kim K S, Kim J U, Yoo P J, Kim T. Adv. Mater., 2016,28:8130.

pmid: 27396592
[90]
Chen S, Wei Y, Wei S, Lin Y, Liu L. ACS Appl. Mater. Interfaces, 2016,8:25563. doi: 10.1021/acsami.6b09188

pmid: 27599264
[91]
Jung H, Park C, Lee H, Hong S, Kim H, Cho S J. Sensors, 2019,19:2834.
[92]
Zhou Y, Zhan P, Ren M, Zheng G, Dai K, Mi L, Liu C, Shen C. ACS Appl. Mater. Interfaces, 2019,11:7405. doi: 10.1021/acsami.8b20768

pmid: 30698944
[93]
Xin Y, Zhou J, Tao R, Xu X, Lubineau G. ACS Appl. Mater. Interfaces, 2018,10:33507. doi: 10.1021/acsami.8b08166

pmid: 30211536
[94]
Zhang S, He Z, Zhou G, Jung B M, Kim T H, Park B J, Byun J H, Chou T W. Composites Science and Technology, 2020,189:108011.
[95]
He Z, Byun J H, Zhou G, Park B J, Kim T H, Lee S B, Yi J W, Um M K, Chou T W. Carbon, 2019,146:701.
[96]
Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, Li B. ACS Appl. Mater. Interfaces, 2018,10:6624.

pmid: 29384359
[97]
Liu Z, Qi D, Hu G, Wang H, Jiang Y, Chen G, Luo Y, Loh X J, Liedberg B, Chen X. Adv. Mater., 2018,30:1704229.
[98]
Wang S, Ning H, Hu N, Liu Y, Liu F, Zou R, Huang K, Wu X, Weng S, Alamusi . IAdv. Mater. nterfaces, 2020,7:1901507.
[99]
Seyedin S, Razal J M, Innis P C, Jeiranikhameneh A, Beirne S, Wallace G G. ACS Appl. Mater. Interfaces, 2015,7:21150. doi: 10.1021/acsami.5b04892

pmid: 26334190
[100]
Xie R, Hou S, Chen Y, Zhang K, Zou B, Liu Y, Liang J, Guo S, Li H, Zheng B, Li S, Zhang W, Wu J, Huo F. Adv. Mater. Technologies, 2019,4:1900442.
[101]
Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal J M. Adv. Funct. Mater., 2020, DOI: 10.1002/adfm.201910504 doi: 10.1002/adfm.201909218

pmid: 32952492
[102]
Yan T, Zhou H, Niu H, Shao H, Wang H, Pan Z, Lin T. Journal of Materials Chemistry C, 2019,7:10049.
[103]
Zhang H, Han W, Xu K, Zhang Y, Lu Y, Nie Z, Du Y, Zhu J, Huang W. Nano Lett., 2020, DOI: 10.1021/acs.nanolett.0c00372

pmid: 33231075
[104]
Ramírez J, Rodriquez D, Urbina A D, Cardenas A M, Lipomi D. ACS Applied Nano Materials, 2019,2:2222.
[105]
Yang Y, Cao Z, He P, Shi L, Ding G, Wang R, Sun J. Nano Energy, 2019,66:104134.
[106]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016,26:1678.
[107]
Cao X, Wei X, Li G, Hua C, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z. Polymer, 2017,112:1.
[108]
Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H, 2008,56:2929.
[109]
De Vivo B, Lamberti P, Spinelli G, Tucci V, Vertuccio L, Vittoria V. Journal of Applied Physics, 2014,116:054307.
[110]
Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H. Carbon, 2010,48:680.
[111]
Li G, Dai K, Ren M, Wang Y, Zheng G, Liu C, Shen C. Journal of Materials Chemistry C, 2018,6:6575.
[112]
Zhang M, Wang C, Wang Q, Jian M, Zhang Y. ACS Appl. Mater. Interfaces, 2016,8:20894. doi: 10.1021/acsami.6b06984

pmid: 27462991
[113]
Wang S, Xiao P, Liang Y, Zhang J, Huang Y, Wu S, Kuo S W, Hen T. Journal of Materials Chemistry C, 2018,6:5140.
[114]
Jang S, Kim J, Kim D W, Kim J W, Chun S, Lee H J, Yi G, Pang C. ACS Appl. Mater. Interfaces, 2019,11:15079. doi: 10.1021/acsami.9b03204

pmid: 30920201
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[5] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[6] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[7] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[8] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[9] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[10] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[15] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.