中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1086-1102 DOI: 10.7536/PC190117 Previous Articles   Next Articles

Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties

Zhengying Wu1, Xie Liu1, Jinsong Liu2,**(), Shouqing Liu1, Zhenlong Zha1, Zhigang Chen1,**()   

  1. 1. Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received: Online: Published:
  • Contact: Jinsong Liu, Zhigang Chen
  • About author:
    ** E-mail: (Jinsong Liu)
    (Zhigang Chen)
  • Supported by:
    National Natural Science Foundation of China(51478285); Natural Science Foundation of Jiangsu Province(BK20151198); Science and Technology Development Project of Suzhou(SYG201818); Fundamental Research Funds for the Central Universities(NS2017038)
Richhtml ( 55 ) PDF ( 1486 ) Cited
Export

EndNote

Ris

BibTeX

With the gradual aggravation of environmental pollution and energy shortage, both developing technology on non-pollution environmental restoration and exploring project on alternative clean energy have recently become a very important and quite urgent task. As one of the transition metal sulfides with layered structures similar to graphene, molybdenum disulfide(MoS2) has become a research hotspot in the field of photocatalytic environmental remediation and clean energy(hydrogen generation) due to its narrow band gap, high reaction activity of the edges, and ease of forming a composite structure with other substances. This paper mainly introduces the synthesis methods, photocatalytic degradation and hydrogen generation behaviors of the MoS2 and its composites. Detailed methodologies for the synthesis of semiconductor MoS2 and its composites, photocatalytic degradation activity of pollutants, photocatalytic hydrogen generation activity and the corresponding mechanisms are emphasized and illustrated by a great many of the typical examples. MoS2 and its composites have displayed many advantages including environment friendliness, low cost and high efficiency in photocatalytic degradation of pollutants and photocatalytic hydrogen production. As the bright future materials, MoS2 and its composites have a broad application prospect in the field of environmental restoration and clean energy with the further development of its general mechanism.

Fig. 1 (a) Schematic illustration of basic mechanism of a semiconductor photocatalytic process[14],(b) three crystal structures of molybdenum disulfide[15],(c) band structures for bulk and monolayer MoS2[15]
Fig. 2 Conductor band and valence band positions of different semiconductors
Fig. 3 (a) SEM image of flower-like MoS2 microsphere[21],(b) SEM image of flower-like MoS2 spheres[22],(c) TEM image of MoS2 nanosheets[23], and(d) TEM image of amorphous spherical MoS2[24]
Fig. 4 (a) SEM image of MoS2 thin layer coated with TiO2 nanobelt TiO2@MoS2 heterostructure[27],(b) SEM image of MoS2@TiO2 heterostructure[35],(c) SEM image of TiO2@MoS2 heterostructure[35],(d) SEM image of MoS2@SnO2 complex[42],(e) SEM image of heterogeneous structured MoS2/MoO4[44],(f) SEM image of heterogeneous structured MoS2/BiVO4 composite[48],(g) TEM image of low layer MoS2/BiOBr hollow microsphere[49]
Fig. 5 (a) SEM image of heterogeneous structured CdS/MoS2[51],(b) TEM image of MoS2/reduced graphene(rGO) composite[36],(c) schematic diagram of Ag3PO4/MoS2 composite in the Z-scheme structure[76],(d) TEM image of Ag3PO4/MoS2 composite[78]
Fig. 6 (a) Degradation of MO by leaf-shaped MoS2 and (b) photocatalytic stability of the leaf-shaped MoS2[23]
Fig. 7 Degradation efficiency to MB by different composites:(a) MoS2/ZnO heterojunction[38],(b) MoS2/SnO2[42],(c) MoS2/BiVO4[48], and(d) MoS2/CdS heterojunction[51]
Fig. 8 Degradation efficiency to RhB by different composites:(a) MoS2/MoOx heterojunction nanosheets[21],(b) MoS2/BiOBr hollow microspheres[49],(c) TiO2/MoS2 core-shell heterojunctions[26], and (d) CdS/MoS2 heterojunctions[51]
Fig. 9 Hydrogen production rates of different samples:(a) TiO2@MoS2 heterostructure[30],(b) MoS2 nanosheet-coated ZnO heterostructure[39],(c) MoS2-CdS photocatalyst[55], and(d) MoS2 nanosheet/CdS nanorod heterostructure[90]
Fig. 10 Hydrogen production rates of different samples:(a) CuS2-TiO2[62],(b) MoS2/ZnIn2S4 heterostructure[66],(c) Sm2O3@Co1-xS/MoS2 photocatalyst[64], and(d) Ag/MoS2 nanocomposite[92]
Fig. 11 Hydrogen production rates of different samples:(a) Au nanoparticle-supported MoS2/RGO composite[75],(b) CQDs/MoS2 composite [71],(c) MoS2/HCNS hollow sphere[82], and(d) MoS2 QDs/UiO-66-NH2/G composite[85]
Fig. 12 (a) Schematic diagram of MoS2 grows along(002) direction[22],(b) degradation mechanism of Bi2O3/Bi2S3/MoS2 heterostructure,(c) degradation mechanism of MoS2/MoOx heterostructure[44],(d) degradation mechanism of MoS2/Bi2MoO6 composite,(e) degradation mechanism of N-TiO2-x@MoS2 nuclear shell structure,(f) degradation mechanism of Ag3PO4/MoS2 heterojunction,(g) degradation mechanism of MoS2/C3N4 heterojunction[80]
Fig. 13 Hydrogen production mechanism of different samples:(a) vertical MoS2 on the substrate[32],(b) a compact interface between metallic MoS2 and ZnO[39],(c) space charge region[92],(d) surface plasmon resonance effect[75],(e) electrons transfer from TiO2to MoS2[30],(f) electrons transfer from MoS2to ZnO[41],(g) traditional type Ⅱ heterojunction[31],(h) sensitization effect[64],(i) Z-scheme structure[84]
[1]
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G . Energ. Environ. Sci., 2014,7(9):2831. http://xlink.rsc.org/?DOI=C4EE01299B

doi: 10.1039/C4EE01299B
[2]
李圭白(Li G B), 李虹(Li H) . 锰化合物净水技术(Manganese Compound Water Purification Technology). 天津: 中国建筑工业出版社( Tianjin: China Construction Industry Press), 2005. 103.
[3]
Leng H, Loy J, Amin V, Weiss E A, Pelton M . ACS Energy Lett., 2016,1:9.
[4]
Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M . Appl. Catal. B: Env., 2017,202:314.
[5]
Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X . Nat. Nanotechnol., 2016,11:218. https://www.ncbi.nlm.nih.gov/pubmed/26936816

doi: 10.1038/nnano.2015.340 pmid: 26936816
[6]
Feng B, Wu Z, Liu J, Zhu K, Li Z, Jin X, Huo Y D, Xi Q Y, Cong M Q, Liu P C, Gu Q L . Appl. Catal. B: Env., 2017,206:242.
[7]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J . Adv. Mater., 2012,24:229. https://www.ncbi.nlm.nih.gov/pubmed/21972044

doi: 10.1002/adma.201102752 pmid: 21972044
[8]
Frank S N, Bard A J . J Phys. Chem. C, 1977,81(15):1484.
[9]
Fujishima A, Honda K . Nature, 1972,238:37. https://www.ncbi.nlm.nih.gov/pubmed/12635268

doi: 10.1038/238037a0 pmid: 12635268
[10]
Linsebigler A L, Lu G Q, Yates J T , Chem. Rev., 1995,95:735. https://pubs.acs.org/doi/abs/10.1021/cr00035a013

doi: 10.1021/cr00035a013
[11]
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T , Nature, 1997,388:431.
[12]
Hashimoto K, Irie H , A. Fujishima, Jpn. J. Appl. Phys., 2005,44:8269.
[13]
Roy S C, Varghese O K, Paulose M, Grimes C A , ACS Nano, 2010,4:12.
[14]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J . Adv. Mater., 2012,24:229. https://www.ncbi.nlm.nih.gov/pubmed/21972044

doi: 10.1002/adma.201102752 pmid: 21972044
[15]
Wang Q H, Kalantar-Zadeh , Kis A, Coleman J N, Strano M S . Nat. Nanotechnol., 2012,7(11):699. https://www.ncbi.nlm.nih.gov/pubmed/23132225

doi: 10.1038/nnano.2012.193 pmid: 23132225
[16]
Zhang Z J, Zhang J, Xue Q J . J Phys. Chem. C, 1994,98(49):12973.
[17]
Benavente E, Santa Ana M, Mendizábal F, González G . Coord. Chem. Rev., 2002,224(1):87.
[18]
Moore S E, Lunsford J H . J. Cata., 1982,77(1):297.
[19]
Zhou Z, Lin Y, Zhang P, Ashalley E, Shafa M, Li H, Wu J, Wang Z M . Mater. Lett., 2014,131(1):122.
[20]
Wang D Z, Su B, Jiang Y, Li L, Boon K N, Wu Z Z, Liu F Y . Chem. Eng. J., 2017,330:102.
[21]
Zhong M, Wei Z M, Meng X, Wu F, Li J . Eur J. Inorg. Chem., 2014,20:3245.
[22]
Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J . Mater. Lett., 2015,144:153.
[23]
Liu W, Hu Q, Fei M, Hu J, Yi F, Tang H, Ye H, Miao S . J. Mol. Catal. A: Chem., 2014,395:322. https://www.ncbi.nlm.nih.gov/pubmed/1148239

doi: 10.1016/0005-2787(75)90203-8 pmid: 1148239
[24]
Saha N, Sarkar A, Ghosh A B, Dutta A K, Bhadu G R, Paul P, Adhikary B . RSC Adv., 2015,5(108):88848.
[25]
Peng R, Liang L, Hood Z D, Boulesbaa A, Puretzky A, Ievlev A V, Come J, Ovchinnikova O S, Wang H, Ma C, Chi M F, Sumpter B G, Wu Z . ACS Catal., 2016,6:6723.
[26]
Wang C X, Lin H, Liu Z, Wu J, Xu Z, Zhang C . Part. Part. Syst. Char., 2016,33(4):221.
[27]
Zhou W J, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H . Small, 2013,9(1):140.
[28]
Liu H, Lv T, Zhu C, Su X, Zhu Z . J. Mol. Catal. A: Chem., 2015,396:136.
[29]
Cao L, Wang R, Wang D, Li X, Jia H . Mater. Lett., 2015,160:286.
[30]
Liu C B, Wang L L, Tang Y H, Luo S L, Liu Y, Zhang S, Zeng Y, Xua Y . Appl. Catal. B-Environ., 2015,164:1.
[31]
Paul K K, Sreekanthb N, Birojub R K, Narayananb T N, Giria P K . Sol. Energ. Mat. Sol. C, 2018,185:364.
[32]
He H Y, Lin J, Fu W, Wang X, Wang H, Zeng Q S, Gu Q, Li Y, Yan C, Beng K T, Xue C, Hu X, Pantelides S T, Zhou W, Liu Z . Adv. Energy Mater., 2016,6:1600464.
[33]
Zhang W P, Xiao X, Li Y, Zeng X, Zheng L, Wan C . RSC Adv., 2016,6:33705.
[34]
Song B, Wang L, Chen X, Du J, Xiong Y . Nano Res., 2015,8(1):175. https://www.ncbi.nlm.nih.gov/pubmed/23594476

doi: 10.1186/1556-276X-8-175 pmid: 23594476
[35]
Fu H, Yu K, Li H, Li J, Guo B, Tan Y, Song C, Zhu Z . Dalton Trans., 2015,44:1664. https://www.ncbi.nlm.nih.gov/pubmed/25438064

doi: 10.1039/c4dt03035d pmid: 25438064
[36]
Liu X F, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W. Appl. Catal. B: Env., 2017,201:119.
[37]
Tang X D, Wang Z, Huang W, Jing Q, Liu N . Mater Res Bull, 2018,105:126.
[38]
Tan Y H, Yu K, Li J Z, Fu H, Zhu Z Q . J. Appl. Phys., 2014,116(06):183.
[39]
Yuan Y J, Wang F, Hu B, Lu H W, Yu Z, Zou Z G . Dalton Trans., 2015,44:10997.
[40]
Zhang S B, Tang F, Liu J, Che W, Su H, Liu W, Huang Y, Jiang Y, Yao T, Liu Q, Wei S . Radiat. Phy. Chem., 2017,137:104.
[41]
Guo S H, Li X, Zhu J, Tong T, Wei B . Small, 2016,41:5692. https://www.ncbi.nlm.nih.gov/pubmed/27594534

doi: 10.1002/smll.201602122 pmid: 27594534
[42]
Li J Z, Yu K, Tan Y, Fu H, Zhang Q, Cong W, Song C, Yin H, Zhu Z . Dalton. Trans., 2014,43(34):13136. https://www.ncbi.nlm.nih.gov/pubmed/25048830

doi: 10.1039/c4dt01436g pmid: 25048830
[43]
Vattikuti S V P, Chan B, Reddy C V, Ravikumar R V S S N . RSC Adv., 2015,5(105):86675.
[44]
Zhou G, Xu X, Yu J, Feng B, Zhang Y, Hu J, Zhou Y . CrystEngComm, 2014,16:9025.
[45]
Zhang J, Huang L, Jin H, Sun Y, Ma X, Zhang E, Wang H, Kong Z, Xi J, Ji Z . Mater. Res. Bull., 2017,85:140.
[46]
Chen Y J, Tian G, Shi Y, Xiao Y, Fu H . Appl. Catal. B: Env., 2015,164:40.
[47]
Li Z Z, Meng X, Zhang Z . Catalysis Today 2018,315:67.
[48]
Li H L, Yu K, Lei X, Guo B, Fu H, Zhu Z . J. Phys. Chem. C, 2015,119:22681.
[49]
Xia J X, Ge Y, Zhao D, Di J, Ji M, Yin S, Li H, Chen. R . CrystEngComm, 2015,17:3645.
[50]
Liu J H, Zhang L, Li N, Tian Q, Zhou J, Sun Y . J. Mater. Chem. A, 2014,3(2):706.
[51]
Min Y L, He G Q, Xu Q J, Chen Y C . J. Mater. Chem. A, 2014,2:2578.
[52]
Wang C X, Lin H, Xu Z, Cheng H, Zhang C . RSC Adv., 2015,5:15621.
[53]
Zhang S W, Yang H, Gao H, Cao R, Huang J, Xu X. ACS Appl . Mater. Interfaces, 2017,9:23635. https://www.ncbi.nlm.nih.gov/pubmed/28608669

doi: 10.1021/acsami.7b03673 pmid: 28608669
[54]
Xu J, Cao X . Biochem. Eng. J., 2015,260:642.
[55]
Zhou X Z, Huang J, Zhang H, Sun H, Tu W . Inter. J. Hydrogen Energ., 2016,41:14758. https://linkinghub.elsevier.com/retrieve/pii/S0360319916318961

doi: 10.1016/j.ijhydene.2016.06.190
[56]
Xiong J H, Liu Y, Wang D, Liang S, Wu W, Wu L . J. Mater. Chem. A, 2015,3:12631.
[57]
Kumar D P, Hong S, Reddy D A, Kim T K . J. Mater. Chem. A, 2016,4:18551.
[58]
Reddy D A, Park H, Hong S, Kumar D P, Kim T K . J. Mater. Chem. A, 2017, 5: 6981.1
[59]
Iqbal S, Pan Z, Zhou K . Nanoscale, 2017,9:6638. https://www.ncbi.nlm.nih.gov/pubmed/28497825

doi: 10.1039/c7nr01705g pmid: 28497825
[60]
Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L . Small, 2015,11(41):5556. https://www.ncbi.nlm.nih.gov/pubmed/26332270

doi: 10.1002/smll.201501822 pmid: 26332270
[61]
Meng N N, Zhou Y, Nie W, Song L, Chen P . J. Nanopart. Res., 2015,17:300.
[62]
Zhang X J, Guo Y, Tian J, Sun B, Liang Z, Xu X, Cui H . Appl. Cat. B-Environ., 2018,232:355.
[63]
Yu X L, Du R, Li B, Zhang Y, Liu H, Qu J, An X . Appl. Cat. B-Environ., 2016,182:504.
[64]
Yu H, Xu J, Guo H, Li Y, Liu Z, Jin Z . RSC Adv., 2017,7:56417.
[65]
Li W, Lin Z, Yang G . Nanoscale, 2017,9:18290. https://www.ncbi.nlm.nih.gov/pubmed/29140396

doi: 10.1039/c7nr06755k pmid: 29140396
[66]
Zhang Z Z, Huang L, Zhang J, Wang F, Xie Y, Shang X, Gu Y, Zhao H, Wang X . Appl Cat B-Environ., 2018,233:112.
[67]
Chai B, Liu C, Wang C, Yan J, Ren Z. Chinese J . Catal., 2017,38:2067.
[68]
Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A . Catal. Sci. Technol., 2015,5:4133.
[69]
Hu C Y, Zheng S, Lian C, Chen F, Lu T, Hu Q, Dou S, Zhang R, Guan C . J. Mol. Catal. A: Chem., 2015,396:128.
[70]
Song W J, Nie T, Lai W, Yang W, Jiang X . CrystEngComm, 2018,18(20):4069.
[71]
Zhao S Y, Li C, Wang L, Liu N, Qiao S, Liu B, Huang H, Liu Y, Kang Z . Carbon, 2016,99:599.
[72]
Zhang L, Sun L, Liu S, Huang Y, Xu K, Ma F . RSC Adv., 2016,6:60318.
[73]
Li J, Liu X, Pan L, Qin W, Chen T, Sun Z . RSC Adv., 2014,4:9647.
[74]
Ding Y, Zhou Y, Nie W, Chen P . Appl. Surf. Sci., 2015,357:1606. https://linkinghub.elsevier.com/retrieve/pii/S0169433215024277

doi: 10.1016/j.apsusc.2015.10.030
[75]
Yu X, Shi J, Wang L, Wang W, Bian J, Feng L, Li C . Mater. Lett., 2016,182:125.
[76]
Zhu C S, Zhang L, Jiang B, Zheng J, Hu P, Li S, Wu M, Wu W . Appl. Surf. Sci., 2016,377:99.
[77]
Wang P F, Shi P, Hong Y, Zhou X, Yao W . Mater. Res. Bull., 2015,26:24.
[78]
Song Y H, Lei Y, Xu H, Wang C, Yan J, Zhao H, Xu Y, Xia J, Yin S, Li H . Dalton Trans., 2015,44(7):3057. https://www.ncbi.nlm.nih.gov/pubmed/25567674

doi: 10.1039/c4dt03242j pmid: 25567674
[79]
Wang L, Chai Y, Ren J, Ding J, Liu Q, Dai W L . Dalton Trans., 2015,44(33):14625. https://www.ncbi.nlm.nih.gov/pubmed/26212501

doi: 10.1039/c5dt01961c pmid: 26212501
[80]
Li Q, Zhang N, Yang Y, Wang G, Ng D H . Langmuir, 2014,30:8965. https://www.ncbi.nlm.nih.gov/pubmed/25017627

doi: 10.1021/la502033t pmid: 25017627
[81]
Peng W C, Li X Y . Catal. Commun., 2014,49(5):63.
[82]
Zheng D D, Zhang G, Hou Y, Wang X . Appl. Cat. A-Gener., 2016,521:2.
[83]
Li M L, Zhang L X, Fan X Q, Wu M Y, Du Y Y, Wang M, Kong Q L, Zhang L L, Shi J L . Appl. Cata. B-Environ., 2016,190:36.
[84]
Liu Y Z, Zhang H, Ke J, Zhang J, Tian W, Xu X, Duan X, Sun H, Tade M O, Wang S . Appl. Cata. B-Environ., 2018,228:64.
[85]
Hao X Q, Jin Z, Yang H, Lu G, Bi Y . Appl. Cat. B-Environ., 2017,210:45.
[86]
Zhang W, Xiao X, Zheng L, Wan C . Appl. Surf. Sci., 2015,93:358.
[87]
Cravanzola S, Cesano F, Magnacca G, Zecchina A, Scarano D . RSC Adv., 2016,6(64):59001.
[88]
Peng W C, Wang X, Li X Y . Nanoscale, 2014,6:8311. https://www.ncbi.nlm.nih.gov/pubmed/24933179

doi: 10.1039/c4nr01654h pmid: 24933179
[89]
Awasthi G P, Adhikari S P, Ko S, Han J K, Chan H P, Kim C S . J. Alloys. Compd., 2016,682:208.
[90]
Zhang X H, Li N, Wu J, Zheng Y Z, Tao X . Appl. Cat. B-Environ., 2018,229:227.
[91]
Yuan Y J, Lia Z, Wu S, Chen D, Yang L X, Cao D, Tu W G, Yu Z T, Zou Z G . Chem. Eng. J., 2018,350:335. https://linkinghub.elsevier.com/retrieve/pii/S1385894718309951

doi: 10.1016/j.cej.2018.05.172
[92]
Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radimane S, Hamide M A A . Catal. Sci. Technol., 2015,15(5):4133.
[93]
Linsebigler A L, Lu G, Yates J T . Chem. Rev., 1995,95(3):735.
[94]
Ke J, Liu J, Sun H, Zhang H, Duan X, Liang P, Li X, Tade , M , Liu S, Wang S . Appl. Catal. B: Env., 2017,200:47.
[95]
Hou Y, Liu J, Li Z, Wu Z, Zhu K, Xi Q, Zhuang J, Chen J, Qian G, Cong M . Mater. Lett., 2018,218:110.
[96]
Liu C, Kong D, Hsu P C, Yuan H, Lee H W, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini P A, Parker K M, Boehm A B, Cui Y . Nature Nanotech., 2016,11(12):1098.
[97]
Liu Z, Wang X, Qiao P, Tian Y, Li H, Yang J . J. Mater. Sci: Mater. Electron., 2015,26:7153.
[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[5] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[6] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[7] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[8] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[9] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[10] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[11] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[12] Yang Changjun, Peng Tianyou, Deng Kejian, Zan Ling. Solid-Phase Photocatalytic Degradation of Waste Plastics [J]. Progress in Chemistry, 2011, 23(5): 874-879.
[13] Yang Yang Zheng Wen Cheng Dangguo Chen Fengqiu Zhan Xiaoli. The Application of in Situ FT-IR in the Research of Methane Oxidation [J]. Progress in Chemistry, 2009, 21(10): 2205-2211.
[14] Yang Zhen*. Fundamentals of Biocatalysis in Organic Solvents [J]. Progress in Chemistry, 2005, 17(05): 924-930.
[15] Dai Yan,Cheng Peng. The Research Progress of Ni-containing Enzymes and Model Compounds [J]. Progress in Chemistry, 2002, 14(01): 47-.