中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1731-1740 DOI: 10.7536/PC200904 Previous Articles   Next Articles

• Review •

Preparation and Application of Lead Halide Perovskite-Polymer Composites

Jingjing Xiao1,2, Mu Wang3, Weijie Zhang1,2, Xiuying Zhao1,2(), Anchao Feng1,2(), Liqun Zhang1,2   

  1. 1 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 School of Materials Science and Engineering, Center of Advanced Elastomer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    3 Sinopec Research Institute of Petroleum Engineering,Beijing 100101, China
  • Received: Revised: Online: Published:
  • Contact: Xiuying Zhao, Anchao Feng
Richhtml ( 57 ) PDF ( 1084 ) Cited
Export

EndNote

Ris

BibTeX

With excellent photoelectric properties, lead halide perovskite nanocrystals(NCs) show great potential in solar cells, photoelectric detection, biological imaging and other fields. However, the poor stability of lead halide perovskite NCs restricts practical applications. Within a few years, many strategies have been developed to solve the problems of poor stability of perovskite NCs, such as ion doping, surface passivation and surface cladding. Noteworthily, it is an effective strategy developed recently that enhance the stability of perovskite by embedding perovskite NCs into polymer and preparing perovskite-polymer composites. Specially, the dense polymer matrix endows the lead halide perovskite NCs with excellent water stability. This review summarizes the preparation of perovskite-polymer composites and their applications in the fields of light-emitting devices and biomedicine. At the same time, the preparation methods of perovskite-polymer composites are discussed in details, which can be classified into three types: blending, in-situ polymerization and in-situ perovskite growth/precipitation method. These methods will be a guide to overcome the limitation of perovskite NCs and impel the development of their practical application. In addition, the existing problems for encapsulating perovskite NCs into polymer matrix are highlighted, while some suggestions for further improving the performance of perovskite-polymer composites are discussed. Finally, the future development of perovskite-polymer composites is prospected.

Contents

1 Introduction

2 Preparation of lead halide perovskite-polymer composites

2.1 Blending method

2.2 In situ polymerization method

2.3 In situ perovskite growth/ precipitation method

3 Application of lead halide perovskite-polymer composites

4 Conclusion and outlooks

Fig. 1 Crystal structures of lead halide perovskites
Fig.2 (a) Schematic of CsPbX3@SBS fiber membranes(FMs) fabrication process.(b) Optical image of red, yellow, green, and blue composite FMs under UV-light excitation.(c) Fluorescence microscopic images of versatile CsPbX3 fibers[52]
Fig.3 Schematic diagram of the electrospraying method for preparing CsPbBr3@PS microspheres[42]
Fig. 4 Preparation process of perovskite-polymer composites(CsPbBr3-polymer or CH3NH3PbBr3-polymer)[43]
Fig. 5 Proposed reaction mechanism of the perovskite photoactivated polymerization of styrene[56]
Fig.6 (a) Preparation of MAPbBr3 polymer composite films.(b) Water stability tests of MAPbBr3 polymer composite films.(c) Thermal stability tests of MAPbBr3 polymer composite films.[45]
Fig.7 (a) Illustration of the Synthesis of Ternary NC-GO-g-PAA Hybrid.(b)TEM images of the NC-GO-g-PAA hybrid and self-assembled nanorods.(c) Photographs of glass slides coated with NC-GO-g-PAA nanorod films after soaking in water or exposure to air for 0 and 10 days[67]
Fig.8 (a) Schematic diagram of the configuration of the prototype LED device and photographs of white LED;(b) Emission spectrum of the white LED;(c) A demonstration of composite films based backlight system with a size of 3.5 cm × 5 cm.(d) The color coordinate(black star) and the color triangle(white line) of obtained white LED is exhibited in CIE 1931 diagram[58]
Fig.9 (a, b, c-1) and(-2) Bright-field and fluorescence images of RAW 264.7 cells incubated with CsPbX3 NCs@MHSs.(a, b, c-3) Overlaid picture of(-1) and(-2).(d~f)The PL spectra of intracellular CsPbX3[69]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r
[2]
Liu M Z, Johnston M B, Snaith H J. Nature, 2013, 501(7467): 395.

doi: 10.1038/nature12509
[3]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107): 643.

doi: 10.1126/science.1228604
[4]
Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S. J. Phys. Chem. Lett., 2015, 6(21): 4360.

doi: 10.1021/acs.jpclett.5b02011
[5]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013, 52(15): 9019.
[6]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2584.

doi: 10.1002/adfm.v26.15
[7]
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517(7535): 476.

doi: 10.1038/nature14133
[8]
Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F. ACS Energy Lett., 2018, 3(2): 305.

doi: 10.1021/acsenergylett.7b01287
[9]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Adv. Mater., 2016, 28(45): 10088.
[10]
Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13(5): 476.

doi: 10.1038/nmat3911
[11]
Chen S T, Roh K, Lee J, Chong W K, Lu Y, Mathews N, Sum T C, Nurmikko A. ACS Nano, 2016, 10(4): 3959.

doi: 10.1021/acsnano.5b08153
[12]
Zhou L, Yu K, Yang F, Zheng J, Zuo Y H, Li C B, Cheng B W, Wang Q M. Dalton Trans., 2017, 46(6): 1766.

doi: 10.1039/c6dt04758k pmid: 28091682
[13]
Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y,. Nat. Commun., 2014, 5(1): 1.
[14]
Roesch R, Faber T, von Hauff E, Brown T M, Lira-Cantu M, Hoppe H. Adv. Energy Mater., 2015, 5(20): 1501407.

doi: 10.1002/aenm.201501407
[15]
Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J. Adv. Energy Mater., 2015, 5(20): 1500963.

doi: 10.1002/aenm.201500963
[16]
Xu Y, Cao M M, Xiao C, Li H L. Journal of Liaocheng University(Nat.Sci.), 2019, 32(1): 69.
( 徐妍, 曹蒙蒙, 夏超, 李会利. 聊城大学学报(自然科学版), 2019, 32(1): 69.)
[17]
Xie Q F, Wang X Z, Li Y, Ma Y H. Journal of Shenzhen Institute of Information Technology, 2018, 16(2):56.
( 谢启飞, 王新中, 李玥, 马艳红. 深圳信息职业技术学院学报, 2018, 16(2):56.)
[18]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15(8): 5635.

doi: 10.1021/acs.nanolett.5b02404
[19]
Akkerman Q A, D'Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2015, 137(32): 10276.

doi: 10.1021/jacs.5b05602 pmid: 26214734
[20]
Wei Y, Cheng Z Y, Lin J. Chem. Soc. Rev., 2019, 48(1): 310.

doi: 10.1039/c8cs00740c pmid: 30465675
[21]
Fan Q H, Zu Y Q, Li L, Dai J F, Wu Z X. Acta Phys. Sin., 2020, 69(11): 118501.
( 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 物理学报, 2020, 69(11): 118501.)
[22]
Lou S Q, Xuan T T, Wang J. Opt. Mater.: X, 2019, 1: 100023.
[23]
Zou S H, Liu Y S, Li J H, Liu C P, Feng R, Jiang F L, Li Y X, Song J Z, Zeng H B, Hong M C, Chen X Y. J. Am. Chem. Soc., 2017, 139(33): 11443.

doi: 10.1021/jacs.7b04000
[24]
Mondal N, De A, Samanta A. ACS Energy Lett., 2019, 4(1): 32.

doi: 10.1021/acsenergylett.8b01909
[25]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano, 2017, 11(10): 10373.

doi: 10.1021/acsnano.7b05442
[26]
Li H B, Qian Y, Xing X, Zhu J F, Huang X Y, Jing Q, Zhang W H, Zhang C F, Lu Z D. J. Phys. Chem. C, 2018, 122(24): 12994.

doi: 10.1021/acs.jpcc.8b04569
[27]
Dirin D N, Benin B M, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M V. ACS Nano, 2019, 13(10): 11642.

doi: 10.1021/acsnano.9b05481
[28]
Liu K K, Liu Q, Yang D W, Liang Y C, Sui L Z, Wei J Y, Xue G W, Zhao W B, Wu X Y, Dong L, Shan C X. Light.: Sci. Appl., 2020, 9(1): 1.

doi: 10.1038/s41377-019-0231-1
[29]
Leng M Y, Yang Y, Zeng K, Chen Z W, Tan Z F, Li S R, Li J H, Xu B, Li D B, Hautzinger M P, Fu Y P, Zhai T Y, Xu L, Niu G D, Jin S, Tang J. Adv. Funct. Mater., 2018, 28(1): 1704446.

doi: 10.1002/adfm.v28.1
[30]
Liu H Y, Tan Y S, Cao M H, Hu H C, Wu L Z, Yu X Y, Wang L, Sun B Q, Zhang Q. ACS Nano, 2019, 13(5): 5366.

doi: 10.1021/acsnano.9b00001
[31]
Zhou W L, Zhao Y L, Wang E S, Li Q N, Lou S Q, Wang J, Li X M, Lian Q, Xie Q J, Zhang R Q, Zeng H B. J. Phys. Chem. Lett., 2020, 11(8): 3159.

doi: 10.1021/acs.jpclett.0c00811
[32]
Zhang Q G, Wang B, Zheng W L, Kong L, Wan Q, Zhang C Y, Li Z C, Cao X Y, Liu M M, Li L. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7
[33]
Lou S Q, Zhou Z, Xuan T T, Li H L, Jiao J, Zhang H W, Gautier R, Wang J. ACS Appl. Mater. Interfaces, 2019, 11(27): 24241.

doi: 10.1021/acsami.9b05484
[34]
Wang S X, Bi C H, Yuan J F, Zhang L X, Tian J J. ACS Energy Lett., 2018, 3(1): 245.

doi: 10.1021/acsenergylett.7b01243
[35]
Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L. ACS Appl. Mater. Interfaces, 2020, 12(2): 3080.

doi: 10.1021/acsami.9b20880
[36]
Wu H, Wang S, Cao F, Zhou J P, Wu Q Q, Wang H R, Li X M, Yin L Q, Yang X Y. Chem. Mater., 2019, 31(6): 1936.

doi: 10.1021/acs.chemmater.8b04634
[37]
Wei Y, Xiao H, Xie Z X, Liang S, Liang S S, Cai X C, Huang S S, Al Kheraif A A, Jang H S, Cheng Z Y, Lin J. Adv. Opt. Mater., 2018, 6(11): 1701343.
[38]
Zhong Q X, Cao M H, Hu H C, Yang D, Chen M, Li P L, Wu L Z, Zhang Q. ACS Nano, 2018, 12(8): 8579.

doi: 10.1021/acsnano.8b04209
[39]
Zhang Y C, Zhao Y S, Wu D, Xue J J, Qiu Y, Liao M, Pei Q B, Goorsky M S, He X M. Adv. Mater., 2019, 31(37): 1902928.

doi: 10.1002/adma.v31.37
[40]
Meyns M, Perálvarez M, Heuer-Jungemann A, Hertog W, Ibáñez M, Nafria R, Genç A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G. ACS Appl. Mater. Interfaces, 2016, 8(30): 19579.

doi: 10.1021/acsami.6b02529
[41]
Wei Y, Deng X R, Xie Z X, Cai X C, Liang S S, Ma P A, Hou Z Y, Cheng Z Y, Lin J. Adv. Funct. Mater., 2017, 27(39): 1703535.

doi: 10.1002/adfm.v27.39
[42]
Yang X L, Xu T J, Zhu Y H, Cai J, Gu K L, Zhu J R, Wang Y W, Shen J H, Li C Z. J. Mater. Chem. C, 2018, 6(30): 7971.

doi: 10.1039/C8TC01408F
[43]
Xin Y M, Zhao H J, Zhang J Y. ACS Appl. Mater. Interfaces, 2018, 10(5): 4971.

doi: 10.1021/acsami.7b16442
[44]
Pathak S, Sakai N, Wisnivesky Rocca Rivarola F, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffiths J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J. Chem. Mater., 2015, 27(23): 8066.

doi: 10.1021/acs.chemmater.5b03769
[45]
Wang Y N, He J, Chen H, Chen J S, Zhu R D, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T, Dong Y J. Adv. Mater., 2016, 28(48): 10710.

doi: 10.1002/adma.v28.48
[46]
Raja S N, Bekenstein Y, Koc M A, Fischer S, Zhang D D, Lin L W, Ritchie R O, Yang P D, Alivisatos A P. ACS Appl. Mater. Interfaces, 2016, 8(51): 35523.

doi: 10.1021/acsami.6b09443
[47]
Song Y H, Yoo J S, Kang B K, Choi S H, Ji E K, Jung H S, Yoon D H. Nanoscale, 2016, 8(47): 19523.

doi: 10.1039/C6NR07410C
[48]
Wei S S, Zhu H C, Zhang J, Wang L, An M Q, Wang Y L, Zhang X T, Liu Y C. J. Alloys Compd., 2019, 789: 209.

doi: 10.1016/j.jallcom.2019.02.299
[49]
Kuo C C, Wang C T, Chen W C. Macromol. Mater. Eng., 2008, 293(12): 999.

doi: 10.1002/mame.v293:12
[50]
Chen J Y, Chiu Y C, Shih C C, Wu W C, Chen W C. J. Mater. Chem. A, 2015, 3(29): 15039.

doi: 10.1039/C5TA02417J
[51]
Wang Y W, Zhu Y H, Huang J F, Cai J, Zhu J R, Yang X L, Shen J H, Jiang H, Li C Z. J. Phys. Chem. Lett., 2016, 7(21): 4253.

doi: 10.1021/acs.jpclett.6b02045
[52]
Lin C C, Jiang D H, Kuo C C, Cho C J, Tsai Y H, Satoh T, Su C. ACS Appl. Mater. Interfaces, 2018, 10(3): 2210.

doi: 10.1021/acsami.7b15989
[53]
Liu H, Siron M, Gao M Y, Lu D, Bekenstein Y, Zhang D D, Dou L T, Alivisatos A P, Yang P D. Nano Res., 2020, 13(5): 1453.
[54]
Sun H Z, Yang Z Y, Wei M Y, Sun W, Li X Y, Ye S Y, Zhao Y B, Tan H R, Kynaston E L, Schon T B, Yan H, Lu Z H, Ozin G A, Sargent E H, Seferos D S. Adv. Mater., 2017, 29(34): 1701153.

doi: 10.1002/adma.v29.34
[55]
Chen K, Deng X H, Dodekatos G, Tüysüz H. J. Am. Chem. Soc., 2017, 139(35): 12267.

doi: 10.1021/jacs.7b06413 pmid: 28787135
[56]
Wong Y C, de Andrew Ng J, Tan Z K. Adv. Mater., 2018, 30(21): 1800774.

doi: 10.1002/adma.v30.21
[57]
Cha W, Kim H J, Lee S, Kim J. J. Mater. Chem. C, 2017, 5(27): 6667.

doi: 10.1039/C7TC01562C
[58]
Zhou Q C, Bai Z L, Lu W G, Wang Y T, Zou B S, Zhong H Z. Adv. Mater., 2016, 28(41): 9163.

doi: 10.1002/adma.201602651
[59]
Li Y, Lv Y, Guo Z Q, Dong L B, Zheng J H, Chai C F, Chen N, Lu Y J, Chen C. ACS Appl. Mater. Interfaces, 2018, 10(18): 15888.

doi: 10.1021/acsami.8b02857
[60]
Wang Z B, Wang F Z, Sun W D, Ni R H, Hu S Q, Liu J Y, Zhang B, Alsaed A, Hayat T, Tan Z A. Adv. Funct. Mater., 2018, 28(47): 1804187.

doi: 10.1002/adfm.v28.47
[61]
Wang Z B, Luo Z, Zhao C Y, Guo Q, Wang Y P, Wang F Z, Bian X M, Alsaedi A, Hayat T, Tan Z A. J. Phys. Chem. C, 2017, 121(50): 28132.

doi: 10.1021/acs.jpcc.7b11518
[62]
Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S. Nanoscale, 2015, 7(45): 18956.

doi: 10.1039/C5NR04715C
[63]
Zhao Y C, Wei J, Li H, Yan Y, Zhou W K, Yu D P, Zhao Q. Nat. Commun., 2016, 7(1): 1.
[64]
Ma K Z, Du X Y, Zhang Y W, Chen S. J. Mater. Chem. C, 2017, 5(36): 9398.

doi: 10.1039/C7TC02847D
[65]
Tsai P C, Chen J Y, Ercan E, Chueh C C, Tung S H, Chen W C. Small, 2018, 14(22): 1704379.

doi: 10.1002/smll.v14.22
[66]
Wen D, Yu Y H, Fu C, Zhang W Y, Zhang Z T. J. Jianghan Univ. Nat. Sci. Ed., 2015, 43(1): 12.
( 文丹, 喻艳华, 付成, 张玮莹, 张正涛. 江汉大学学报(自然科学版), 2015, 43(1): 12.)
[67]
Pan A Z, Jurow M J, Qiu F, Yang J, Ren B Y, Urban J J, He L, Liu Y. Nano Lett., 2017, 17(11): 6759.

doi: 10.1021/acs.nanolett.7b02959
[68]
Hou S C, Guo Y Z, Tang Y G, Quan Q M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18417.

doi: 10.1021/acsami.7b03445
[69]
Zhang H H, Wang X, Liao Q, Xu Z Z, Li H Y, Zheng L M, Fu H B. Adv. Funct. Mater., 2017, 27(7): 1604382.

doi: 10.1002/adfm.v27.7
[70]
Yang S, Zhang F, Tai J, Li Y, Yang Y, Wang H, Zhang J X, Xie Z G, Xu B, Zhong H Z, Liu K, Yang B. Nanoscale, 2018, 10(13): 5820.
[71]
Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955.

doi: 10.1021/acsami.5b00052
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[8] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[9] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[10] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[11] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[12] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[13] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[14] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[15] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.