中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 371-380 DOI: 10.7536/PC190906 Previous Articles   Next Articles

Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy

Wanqiu Huang, Miaomiao Gao, Hongjing Dou*()   

  1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Hongjing Dou
Richhtml ( 83 ) PDF ( 1244 ) Cited
Export

EndNote

Ris

BibTeX

Photothermal therapy is a new emerging treatment method in recent years, which has the characteristics of strong targeting and wide adaptability. In photothermal therapy, light energy is converted into heat energy through the absorption of light by photothermal agents, thus realizing the therapeutic effect. Therefore, the photothermal conversion performance of photothermal agents directly determines the effect of photothermal therapy. There are many kinds of photothermal agents, which cover a variety of materials with different compositions and properties from inorganic to organic. Among them, polypyrrole has good biocompatibility, excellent photostability and photothermal conversion performance, which is a photothermal agent with great application potential and has attracted wide attention in the field of photothermal therapy. However, its development trend and prospects in the field of photothermal therapy are rarely reported. In this paper, the preparation methods of polypyrrole and its nanocomposites are reviewed, and the applications of polypyrrole and its nanocomposites in the field of photothermal therapy are described in detail, including the properties of polypyrrole-based nanomaterials and the effect of photothermal treatment. It is pointed out that polypyrrole matrix composites with CT, magnetic resonance imaging, photoacoustic imaging and photothermal properties have become the corresponding development trend. On this basis, the problems in the preparation and application of polypyrrole-based nanocomposites are revealed, then the challenges encountered in the development process and the prospects for biomedical applications are analyzed.

Contents

1 Introduction

2 Synthesis and application of polypyrrole Nanoparticles

2.1 Synthesis mechanism

2.2 Preparation method

2.3 Photothermal therapy and photoacoustic imaging of polypyrrole nanoparticles

3 Synthesis and multifunctional application of polypyrrole composite nanomaterials

3.1 Polypyrrole nanoparticles as matrix materials

3.2 Polypyrrole as modified material

4 Conclusion and outlook

Fig. 1 Schematic diagram of synthetic mechanism of Polypyrrole
Fig. 2 Schematic to illustrate the synthesis of PVA-coated PPy nanoparticles[28]. Copyright 2012, John Wiley and Sons
Fig. 3 Schematic illustration of the formation of PPy nanoparticles in an aqueous dispersion of water-soluble polymer/metal cation complexes[45]. Copyright 2013, John Wiley and Sons
Fig. 4 Schematic illustration of the formation of PPy-SiO2 composites conjugated with glutaraldehyde (GTA) for targeted killing of bacteria[29]. Copyright 2013, Royal Society of Chemistry
Fig. 5 Schematic illustration of synthetic route and chemo-photothermal therapy for GNR (Gold Nanorod) @PPy@Fe3O4-DOX-FA nanocomposites[42]. Copyright 2019, Royal Society of Chemistry
Fig. 6 Schematic for the preparation of chitosan-polypyrrole nanocomposites (CS-PPy NCs)[47]. Copyright 2017, John Wiley and Sons
Fig. 7 Relative viabilities of 4T1, U937, and 293T cells after being incubated with various concentrations of PPy for 24 h (a). The tumor growth curves of different groups of mice after treatment (b)[28]. Copyright 2012, John Wiley and Sons
Fig. 8 Photothermal e?ect of pure water and PPy NPs with di?erent concentrations upon the irradiation of 1 W·cm-2 808 nm laser(a). Tumor growth rates of groups after di?erent treatments(b)[46]. Copyright 2012, Royal Society of Chemistry
Fig. 9 (a) Photograph of the nude mice tumor before the data acquisition. (b) Photograph of experimental setup. Photoacoustic images of mice before (c) and (d) 24 h after the tail intravenous injection of Gd-PPy-PEG NPs (100 μL, 5 mg·mL-1). White circles highlight the tumor site. (e) The quanti? cation of photoacoustic signals from the tumor site in (c) and (d)[48]. Copyright 2015, John Wiley and Sons
Fig. 10 A schematic showing the fabrication process of IONP (iron oxide nanoparticles)@PPy-PEG nanocomposite[60]. Copyright 2014, John Wiley and Sons
Fig. 11 Schematic illustration of the formation and NIR theranostic applications of PPI NPs (a). Tumor growth profile of mice after different treatments as noted (mean ± SD, n=5) (b)[50]. Copyright 2019, American Chemical Society
Fig. 12 Schematic illustration of multifunctional mTiO2 (mesoporous TiO2 nanoparticles) @PPy-HNK for tumor therapy and dual-imaging diagnosis[13]. Copyright 2019, John Wiley and Sons
Fig. 13 In vivo CT images (a), MR images (b) and PA images (c) of GNR@PPy@Fe3O4-FA nanocomposites before and 24 h after injection. (d) Tumor growth curves of different groups after various treatments[42]. Copyright 2019, Royal Society of Chemistry
[1]
Daniel L , Daniel P . Retina, 2015,35:213. http://journals.lww.com/00006982-201502000-00006

doi: 10.1097/IAE.0000000000000340
[2]
Peng Z Y , Qin J , Li B , Ye K , Zhang Y , Yang X , Yuan F , Huang L , Hu J , Lu X . Nanoscale, 2015,7:7682. http://xlink.rsc.org/?DOI=C5NR00542F

doi: 10.1039/C5NR00542F
[3]
Han S , Kim Y . Colloid Surface A, 2019,570:414.
[4]
Zhao P H , Jin Z K , Chen Q , Yang T , Chen D Y , Meng J , Lu X F , Gu Z , He Q J. Nat. Commun., 2018,9:4241.
[5]
Liu Y , Ai K , Liu J , Deng M , He Y , Lu L. . Adv. Mater, 2013,25:1353.
[6]
Lyu Y , Zeng J , Jiang Y , Zhen X , Wang T , Qiu S , Lou X , Gao M , Pu K . ACS Nano, 2018,12:1801. https://pubs.acs.org/doi/10.1021/acsnano.7b08616

doi: 10.1021/acsnano.7b08616
[7]
Liu Y , Bhattarai P , Dai Z , Chen X. Chem. Soc. Rev., 2019,48:2053.
[8]
Zou L , Wang H , He B , Zeng L , Tan T , Cao H , He X , Zhang Z , Guo S , Li Y . Theranostics, 2016,6:762.
[9]
Liao J F , Li W T , Peng Jin R , Yang Q , Li H , Wei Y Q , Zhang X N , Qian Z Y . Theranostics, 2015,5:345.
[10]
Huang P , Lin J , Li W , Rong P , Wang Z , Wang S , Wang X , Sun X , Aronova M , Niu G . Angewandte Chemie International Edition, 2013,125:13958.
[11]
Wang J , Han J , Zhu C , Han N , Xi J , Fan L , Guo R . Langmuir, 2018,34:14661.
[12]
Cai Q , Xu J , Yang D , Dai Y , Yang G , Zhong C , Gai S , He F , Yang P . Journal of Materials Chemistry B, 2018,6:8148. http://xlink.rsc.org/?DOI=C8TB02407C

doi: 10.1039/C8TB02407C
[13]
He Y , Wan J , Yang Y , Yuan P , Yang C , Wang Z , Zhang L . Advanced Healthcare Materials, 2019,8:1801254.
[14]
Liu Y , Wang D , Zhao L , Lin M , Sun H , Sun H , Yang B . RSC Advances, 2016,6:15854.
[15]
Rajora M A , Lou J , Zheng G . Chemical Society Reviews, 2017,46:6433.
[16]
Bhattarai P , Dai Z . Advanced Healthcare Materials, 2017,6:1700262.
[17]
Zhang C , Pan H , Wang X , Sun S . Biomaterials Science, 2018,6:2750.
[18]
George P M , Lyckman A W , Lavan D A , Hegde A , Leung Y , Avasare R , Testa C , Alexander P M , Langer R , Sur M . Biomaterials, 2005,26:3511.
[19]
Fahlgren A , Bratengeier C , Gelmi A , Semeins C M , Klein-Nulend J , Jager E W , Bakker A D . Plos One, 2015,10:e0134023.
[20]
Gandhi M R , Murray P , Spinks G M , Wallace G G . Synthetic Metals, 1995,73:247.
[21]
Guo B Q , Zhao J , Wu C , Zheng Y , Ye C , Huang M , Wang S . Colloids and Surfaces B-Biointerfaces, 2019,177:346.
[22]
Lin M , Guo C , Li J , Zhou D , Liu K , Zhang X , Xu T , Zhang H , Wang L , Yang B . ACS Applied Materials & Interfaces, 2014,6:5860.
[23]
Zou Q , Huang J , Zhang X . Small, 2018,14:1803101. http://doi.wiley.com/10.1002/smll.v14.45

doi: 10.1002/smll.v14.45
[24]
Wang J , Neoh K G , Kang E T . Thin Solid Films, 2004,446:205.
[25]
Islam S , Lakshmi G B V S , Zulfequar M, Husain M, Siddiqui A M Pramana, 2015,84:653.
[26]
Groenewoud L M H , Engbers G H M , White R , Feijen J . Synthetic Metals, 2002,125:429.
[27]
Cruz G J , Morales J , Castillo-Ortega M M , Olayo R Synthetic Metals, 1997,88:213.
[28]
Yang K , Xu H , Cheng L , Sun C , Wang, Liu Z . Advanced Materials, 2012,24:5586. http://doi.wiley.com/10.1002/adma.201202625

doi: 10.1002/adma.201202625
[29]
Ju E G , Li Z , Li M , Dong K , Ren J , Qu X . Chemical Communications, 2013,49:9048. 8514378b-e48c-4a1f-99cc-701c1afb8f98 http://dx.doi.org/10.1039/c3cc45290e

doi: 10.1039/c3cc45290e
[30]
Feng W , Zhou X , Nie W , Chen L , Qiu K , Zhang Y , He C . ACS Applied Materials & Interfaces, 2015,7:4354. https://pubs.acs.org/doi/10.1021/am508837v

doi: 10.1021/am508837v
[31]
Liu M , Xu N , Liu W , Xie Z . RSC Advances, 2016,6:84269.
[32]
Sadki S , Schottland P , Brodie N , Sabouraud G . Chemical Society Reviews, 2000,29:283.
[33]
Pletcher D . Electrochimica Acta, 1974,19:47.
[34]
Genies E M , Bidan G , Diaz A F . Journal of Electroanalytical Chemistry, 1983,149:101.
[35]
Armes S P . Synthetic Metals, 1987,20:365.
[36]
Arms S P , Vincent B . Journal of the Chemical Society Chemical Communications, 1987,4:288.
[37]
Xiao Z , Peng C , Jiang X , Peng Y , Huang X , Guan G , Zhang W , Liu X , Qin Z , Hu J . Nanoscale, 2016,8:12917.
[38]
Wang J , Rong J , Fang Z , Wang M , Asif A , Wu Q , Zhou X , Ge X . Particle & Particle Systems Characterization, 2017,34:1600430.
[39]
Liu H , Li W , Cao Y , Guo Y , Kang Y . J Nanopart Res., 2018,20:57.
[40]
Xu L , Wang J , Lu S , Wang X , Cao Y , Wang M , Liu F , Kang Y , Liu H . Langmuir: the ACS Journal of Surfaces and Colloids, 2019,35:9246.
[41]
Tuan H T , Hanh T N , Thi T P T , Ku S K, Jeong J, Choi H, Yong C S, Kim J O Nanomedicine, 2017,12:1511.
[42]
Cao W , Wang X , Song L , Wang P , Hou X , Zhang H , Tian X , Liu X , Zhang Y . RSC Advances, 2019,9:18874.
[43]
Su C , Zhong H , Chen H , Guo Y , Guo Z , Huang D , Zhang W , Wu Q , Yang B , Liu Z . New Journal of Chemistry, 2019,43:8620.
[44]
Yang Q , Li P , Ran H , Wan J , Chen H , Chen H , Wang Z , Zhang L . Acta Biomaterialia, 2019,90:337.
[45]
Zha Z B , Yue X , Ren Q , Dai Z . Advanced Materials, 2013,25:777. http://doi.wiley.com/10.1002/adma.201202211

doi: 10.1002/adma.201202211
[46]
Chen M , Fang X , Tang S , Zheng N . Chemical Communications, 2012,48:8934. a68aad81-3297-4d59-80c2-863aafb5c95c http://dx.doi.org/10.1039/c2cc34463g

doi: 10.1039/c2cc34463g
[47]
Manivasagan P , Nhat Q B , Bharathiraja S , Moorthy M S , Oh Y , Song K , Seo H , Yoon M , Oh J . Scientific Reports, 2017,7:1.
[48]
Liang X , Li Y , Li X , Jing L , Deng Z , Yue X , Li C , Dai Z . Advanced Functional Materials, 2015,25:1451.
[49]
Jin Y S , Li Y , Ma X , Zha Z , Shi L , Tian J , Dai Z . Biomaterials, 2014,35:5795. https://linkinghub.elsevier.com/retrieve/pii/S0142961214003615

doi: 10.1016/j.biomaterials.2014.03.086
[50]
Li W , Wang X , Wang J , Guo Y , Lu S , Li C M , Kang Y , Wang Z , Ran H , Cao Y , Liu H . Biomacromolecules, 2019,20:401.
[51]
Yan D , Liu X , Deng G , Yuan H , Wang Q , Zhang L , Lu J . Journal of Colloid and Interface Science, 2018,530:547. https://linkinghub.elsevier.com/retrieve/pii/S0021979718307495

doi: 10.1016/j.jcis.2018.07.001
[52]
Yang Z , He W , Zheng H , Wei J , Liu P , Zhu W , Lin L , Zhang L , Yi C , Xu Z , Ren J . Biomaterials, 2018,161:1.
[53]
Zhou Y , Hu Y , Sun W , Lu S , Cai C , Peng C , Yu J , Popovtzer R , Shen M , Shi X . Biomacromolecules, 2018,19:2034.
[54]
Burnouf T , Chen C , Tan S , Tseng C , Lu K , Chang L , Nyambat B , Huang S , Jheng P , Aditya R N , Mi F , Chuang E . Acta Biomaterialia, 2019,96:468.
[55]
Chen Y , Xiang S , Wang L , Wang M , Wang C , Liu S , Zhang K , Yang B . Chempluschem, 2018,83:1127.
[56]
Hathout R M , Metwally A A , El-Ahmady S H , Metwally E S, Ghonim N A, Bayoumy S A, Erfan T, Ashraf R, Fadel M, El-Kholy A I, Hardy J G Journal of Drug Delivery Science and Technology, 2018,47:176.
[57]
Wang S , Zhou Z , Yu G , Lu N , Liu Y , Dai Y , Fu X , Wang J , Chen X . ACS Applied Materials & Interfaces, 2018,10:28382.
[58]
Guan H , Ding T , Zhou W , Wang Z , Zhang J , Cai K . Chemical Communications, 2019,55:4359.
[59]
Huang J X , Wang S , Xing Y X , Zhou W , Zhang J X , Cai K Y . Macromolecular Rapid Communications, 2019,40(19):1900263.
[60]
Song X , Gong H , Yin S , Cheng L , Wang C , Li Z , Li Y , Wang X , Liu G , Liu Z . Advanced Functional Materials, 2014,24:1194.
[61]
Han L , Zhang Y , Zhang Y , Shu Y , Chen X , Wang J . Talanta, 2017,171:32.
[62]
Zhao R Y , Sun X , Sun J , Wanga L , Han J . RSC Advances, 2017,7:10143.
[63]
Wang X , Ma Y , Sheng X , Wang Y , Xu H . Nano Letters, 2018,18:2217.
[64]
Zhao J L , Zhou C , Wu C , Wu H , Zhu C , Ye C , Wang S , Zou D . ACS Applied Materials & Interfaces, 2018,10:41947.
[1] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[2] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[3] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[4] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[5] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[6] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[7] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[8] Rui Chen*, Jingjing Wang, Hongzhi Qiao. Organic Photothermal Conversion Materials and Their Application in Photothermal Therapy [J]. Progress in Chemistry, 2017, 29(2/3): 329-336.
[9] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[10] Gao Dangge, Liang Zhiyang, Lyu Bin, Ma Jianzhong. Organic/Inorganic Nanocomposites Prepared by Miniemulsion Polymerization [J]. Progress in Chemistry, 2016, 28(7): 1076-1083.
[11] Zhang Yongjie, Li Huayi, Dong Jin-Yong, Hu Youliang. Polyolefin Covalently Grafted Nanomaterials and Polyolefin Nanocomposites Derived Thereof [J]. Progress in Chemistry, 2015, 27(1): 47-58.
[12] Zhong Zhen, Lu Hang, Ren Tianbin. Shape Control Synthesis of Silver Nanoparticles and Silver Polymeric Nanocomposites [J]. Progress in Chemistry, 2014, 26(12): 1930-1941.
[13] Zhou Sukun, Mao Jianzhen, Xu Feng. Preparation and Applications of Microfibrillated Cellulose [J]. Progress in Chemistry, 2014, 26(10): 1752-1762.
[14] Qi Meizhou, Fu Zhisheng, Fan Zhiqiang. Immobilization of Metallocene Catalysts [J]. Progress in Chemistry, 2014, 26(05): 737-748.
[15] Qiu Shi, Zheng Jingwei, Yang Guitang, Zheng Jingtang, Wu Mingbo, Wu Wenting. Synthesis and Application of Three-Dimensionally Ordered Macroporous Carbon with Designed Pore Architecture [J]. Progress in Chemistry, 2014, 26(05): 772-783.