中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (0203): 179-191 DOI: 10.7536/PC120916 Previous Articles   Next Articles

• Special issues •

Near-Infrared Fluorescence Imaging Probes for Intracellular Reactive Small Molecules

Wang Xu, Zhao Qian, Sun Juan, Lü Jianzheng, Tang Bo*   

  1. Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
  • Received: Revised: Online: Published:
PDF ( 2337 ) Cited
Export

EndNote

Ris

BibTeX

With the development of life sciences, a lot of energy has been put into the research on the pathological and physiological functions of intracellular reactive small molecules (RSMs). As an efficient technique suitable for visualization in vivo, confocal fluorescence imaging has been applied to the monitor of RSMs in biological samples. The near-infrared fluorescence imaging based on molecular probes and nano probes has shown attractive and extensive application prospect in virtue of low background, less cell photodamage, deeper penetration of tissue, and relatively high sensitivity. This review summarizes the recent progress on near-infrared fluorescent probes for cellular RSMs, of which reactive oxygen species, metal ions, H+, anion ions, and thiols are mainly introduced. Particularly, future study and prospect are envisioned. Contents
1 Introduction
2 Near-infrared fluorescent probes for reactive oxygen species
3 Near-infrared fluorescent probes for metal ions
4 Near-infrared fluorescent probes for pH
5 Near-infrared fluorescent probes for anion ions
6 Near-infrared fluorescent probes for thiols
7 Conclusion and outlook

CLC Number: 

[1] Baker M. Nature, 2010, 463: 977-980
[2] Fernández-Suárez M, Ting A Y. Nat. Rev. Mol. Cell Biol., 2008, 9: 929-943
[3] Weissleder R, Ntziachristos V. Nat. Med., 2003, 9: 123-128
[4] Weissleder R. Nat. Biotechnol., 2001, 19: 316- 317
[5] Frangioni J V. Curr. Opin. Chem. Biol., 2003, 7: 626-634
[6] Moncada S, Palmer R M, Higgs E A. Pharmacol. Rev., 1991, 43: 109-142
[7] Suzuki Y J, Forman H J. Free Radic. Biol. Med., 1997, 22: 269-285
[8] Babior B M. Am. J. Med., 2000, 109: 33-44
[9] Azzi A, Davies K J, Kelly F. FEBS Lett., 2004, 558: 3-6
[10] Xu K H, Tang B, Huang H, Yang G W, Chen Z Z, Li P, An L G. Chem. Commun., 2005, 5974-5976
[11] Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2011, 133: 10960-10965
[12] Xu K H, Liu X, Tang B. ChemBioChem, 2007, 8: 453- 458
[13] Li P, Tang B, Xing Y L, Li P M, Yang G W, Zhang L. Analyst, 2008, 133: 1409-1415
[14] Xu K H, Wang L L, Qiang M M, Wang L Y, Li P, Tang B. Chem. Commun., 2011, 7386-7388
[15] Xu K H, Sun S X, Li J, Li L, Qiang M M, Tang B. Chem. Commun., 2012, 684-686
[16] Xu K H, Chen H C, Tian J W, Ding B Y, Xie Y X, Qiang M M, Tang B. Chem. Commun., 2011, 9468-9470
[17] Tian J W, Chen H C, Zhuo L H, Xie Y X, Li N, Tang B. Chem. Eur. J., 2011, 17: 6626-6634
[18] Yu F B, Li P, Li G Y, Zhao G J, Chu T S, Han K L. J. Am. Chem. Soc., 2011, 133: 11030-11033
[19] Song C H, Ye Z Q, Wang G L, Yuan J L, Guan Y F. Chem. Eur. J., 2010, 16: 6464-6472
[20] Shepherd J, Hilderbrand S A, Waterman P, Heinecke J W, Weissleder R, Libby P. Chem. Biol., 2007, 14: 1221-1231
[21] Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133: 5680-5682
[22] Yuan L, Lin W Y, Yang Y T, Chen H. J. Am. Chem. Soc., 2012, 134: 1200-1211
[23] Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Am. Chem. Soc., 2005, 127: 3684-3685
[24] Chen Y G, Guo W H, Ye Z Q, Wang G L, Yuan J L. Chem. Commun., 2011, 6266-6268
[25] Kundu K, Knight S F, Willett N, Lee S, Taylor W R, Murthy N. Angew. Chem. Int. Ed., 2009, 48: 299-303
[26] Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 2795-2801
[27] Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, Suematsu M, Nishimatsu H, Yamane T, Terai T, Hirata Y, Nagano T. J. Am. Chem. Soc., 2010, 132: 15846-15848
[28] Okuda K, Okabe Y, Kadonosono T, Ueno T, Youssif B G M, Kizaka-Kondoh S, Nagasawa H. Bioconjugate Chem., 2012, 23: 324-329
[29] Lee Y E K, Ulbrich E E, Kim G, Hah H, Strollo C, Fan W, Gurjar R, Koo S, Kopelman R. Anal. Chem., 2010, 82: 8446-8455
[30] Lebedev A Y, Cheprakov A V, Sakad?i Dc' S, Boas D A, Wilson D F, Vinogradov S A. ACS Appl. Mater. Inter., 2009, 1: 1292-1304
[31] De Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97: 1515-1566
[32] Qi X, Jun E, Xu L, Kim S, Hong J, Yoon Y, Yoon J. J. Org. Chem., 2006, 71: 2881-2884
[33] Wu F Y, Bae S W, Hong J. Tetrahedron Lett., 2006, 47: 8851-8854
[34] He Q, Miller E W, Wong A P, Chang C J. J. Am. Chem. Soc., 2006, 128: 9316-9317
[35] Vallee B L, Falchuk K H. Phys. Rev., 1993, 73: 79-118
[36] Tang B, Huang H, Xu K H, Tong L L, Yang G W, Liu X, An L G. Chem. Commun., 2006, 3609-3611
[37] Smith B A, Akers W J, Leevy W M, Lampkins A J, Xiao S Z, Wolter W, Suckow M A, Achilefu S, Smith B D. J. Am. Chem. Soc., 2010, 132: 67-69
[38] Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T. J. Am. Chem. Soc., 2004, 126: 12470-12476
[39] Tang B, Cui L J, Xu K H, Tong L L, Yang G W, An L G. ChemBioChem, 2008, 9: 159-1164
[40] Li P, Duan X, Chen Z Z, Liu Y, Xie T, Fang L B, Li X R, Yin M, Tang B. Chem. Commun., 2011, 7755-7757
[41] Hirayama T, van de Bittner G C, Gray L W, Lutsenko S, Chang C J. Proc. Natl. Acad. Sci. USA, 2012, 109: 2228-2233
[42] Cao X W, Lin W Y, Wan W. Chem. Commun., 2012, 6247-6249
[43] Li P, Fang L B, Zhou H, Zhang W, Wang X, Li N, Zhong H B, Tang B. Chem. Eur. J., 2011, 17: 10520-10523
[44] Ye Y, Bloch S, Xu B, Achilefu S. Bioconjugate Chem., 2008, 19: 225-234
[45] Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. Chem. Commun., 2011, 10407-10409
[46] Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T. J. Am. Chem. Soc., 2011, 133: 14157-14159
[47] Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K. Cancer Treat. Rev., 2003, 29: 541-549
[48] Chesler M. Phys. Rev., 2003, 83: 1183-1221
[49] Paradiso A M, Tsien R Y, Machen T E. Nature, 1987, 325: 447-450
[50] Yuli I, Oplatka A. Science, 1987, 235: 340-342
[51] Hansen S H, Sandvig K, Deurs B V. J. Cell Biol., 1993, 121: 61-72
[52] Schindler M, Grabski S, Hoff E, Simon S M. Biochem., 1996, 35: 2811-2817
[53] Holopainen J M, Saarikoski J, Kinnunen P K, Jarvela I. Eur. J. Biochem., 2001, 268: 5851-5856
[54] Tang B, Yu F B, Li P, Tong L L, Duan X, Xie T, Wang X. J. Am. Chem. Soc., 2009, 131: 3016-3023
[55] Tang B, Liu X, Xu K H, Huang H, Yang G W, An L G. Chem. Commun., 2007, 3726-3728
[56] Murtagh J, Frimannsson D O, O'shea D F. Org. Lett., 2009, 11: 5386-5389
[57] Myochin T, Kiyose K, Hanaoka K, Kojima H, Terai T, Nagano T. J. Am. Chem. Soc., 2011, 133: 3401-3409
[58] Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S. Bioconjugate Chem., 2011, 22: 777-784
[59] Berezin M Y, Guo K, Akers W, Northdurft R E, Culver J P, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths G L, Achilefu S. Biophys. J., 2011, 100: 2063-2072
[60] Pal R, Parker D. Chem. Commun., 2007, 474-476
[61] Chiu Y L, Chen S A, Chen J H, Chen K J, Chen H L, Sung H W. ACS Nano, 2010, 4: 7467-7474
[62] Hilderbrand S A, Kelly K A, Niedre M, Weissleder R. Bioconjugate Chem., 2008, 19: 1635-1639
[63] Murray B S, New E J, Pal R, Parker D. Org. Biomol. Chem., 2008, 6: 2085-2094
[64] Cao X W, Lin W Y, He L W. Org. Lett., 2011, 13: 4716-4719
[65] Zhu W H, Huang X M, Guo Z Q, Wu X M, Yu H H, Tian H. Chem. Commun., 2012, 1784-1786
[66] Guo Z Q, Nam S W, Park S, Yoon J. Chem. Sci., 2012, 3: 2760-2765
[67] Tian D H, Qian Z S, Xia Y S, Zhu C Q. Langmuir, 2012, 28: 3945-3951
[68] 黄池宝(Huang C B), 樊江莉(Fan J L), 彭孝军(Peng X J), 孙世国(Sun S G). 化学进展 (Progress in Chemistry), 2007, 19: 1806-1812
[69] 黄池宝(Huang C B), 易道生(Yi D S), 冯承浩(Feng C H), 任安祥(Ren A X), 孙世国(Sun S G). 化学进展(Progress in Chemistry), 2010, 22: 2408-2419
[70] 王楠(Wang N), 徐淑坤(Xu S K), 王文星(Wang W X). 化学进展 (Progress in Chemistry), 2007, 19: 408-413

[1] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[2] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[3] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[4] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[5] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[8] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[9] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[10] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[11] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[12] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[13] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[14] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[15] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.