中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 815-823 DOI: 10.7536/PC210408 Previous Articles   Next Articles

• Review •

Two-Photon Fluorescence Probe in Bio-Sensor

Hui Zhao1, Wenbo Hu2, Quli Fan1()   

  1. 1 State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications,Nanjing 210023, China
    2 Institute of Flexible Electronics, Northwestern Polytechnical University,Xi’an 710072, China
  • Received: Revised: Online: Published:
  • Contact: Quli Fan
  • Supported by:
    Natural Science Foundation of Jiangsu Province of China(19KJB140014); Natural Science Foundation of Jiangsu Province of China(NY219125); Natural Science Foundation of Jiangsu Province of China(NY220024)
Richhtml ( 28 ) PDF ( 485 ) Cited
Export

EndNote

Ris

BibTeX

Fluorescent probes have become a powerful tool for the study of complex biological systems due to their high sensitivity and selectivity. Compared with single-photon fluorescence probe, two-photon fluorescence probe (TPFP) plays an irreplaceable role in biosensor due to its larger penetration depth, lower interference of tissue autofluorescence and better spatial selectivity. In this review, starting from the design strategies of TPFP, we systematically and comprehensively introduce the application of TPFP in the determination of metal ions, celluar microenvironment, reactive species (including reactive oxygen species ROS, reactive nitrogen RNS, reactive sulfur RSS), enzymes, organelles (mitochondria, lysosomes) and so on. After that, we look forward to the key opportunities and challenges in the development and application of organic TPFP.

Contents

1 Introduction

2 Design principle of two-photon fluorescence probes

3 Bio-application of two-photon fluorescence probes

3.1 Two-photon probes for metal ions

3.2 Two-photon probes for cellular microenvironment

3.3 Two-photon probes for reactive species

3.4 Two-photon probes for enzymes

3.5 Two-photon probes for organelles

4 Conclusion and outlook

Fig. 1 Energy diagram of one-photon and two-photon excitation
Fig. 2 Energy diagram for photoinduced electron transfer (PET) (a), intramolecular charge transfer (ICT) (b) and Förster resonance energy transfer (FRET) process[8]
Fig. 3 Detection of Zn2+ under acidic conditions with two-photon fluorescence probe, through the blocking of PET processes[11]
Fig. 4 Two-photon responses of the Zn2+ probe for imaging in brain tissue and zebrafish[19]. Copyright 2017, American Chemical Society
Fig. 5 Two-photon fluorescence probe for the ratiometric detection of mitochondrial pH[23]
Fig. 6 Two-photon fluorescence probe for the detection of lysosomal polarity changes[25]
Fig. 7 Two-photon fluorescence probe for the detection of lysosomal polarity[26]
Fig. 8 Sensing mechanism of phosphinothioate-based two-photon fluorescence probe for the detection of O 2 · -[28]. Copyright 2019, American Chemical Society
Fig. 9 Two-photon fluorescence probe for the detection of H2O2 and the proposed CO photo-release mechanism[30]
Fig. 10 The mechanism of two-photon fluorescence probe for the detection of HClO[31]
Fig. 11 The mechanism of two-photon fluorescence probe for the detection of NO[35]
Fig. 12 Dual-responsive two-photon fluorescent probe for the determination of H2S and HOCl[37]
Fig. 13 The working principle of the designed two-photon ratiometric fluorescent probe for the determination of BACEl[39]
Fig. 14 The two-photon fluorescent probe for the determination of mitochondria[44]. Copyright 2017, American Chemical Society
[1]
Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. Chem. Rev., 2010, 110(5): 2620.

doi: 10.1021/cr900263j pmid: 20000749
[2]
Ueno T, Nagano T. Nat. Methods, 2011, 8(8): 642.

doi: 10.1038/nmeth.1663
[3]
Lavis L D, Raines R T. ACS Chem. Biol., 2008, 3(3): 142.

doi: 10.1021/cb700248m pmid: 18355003
[4]
Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W. PNAS, 2003, 100(12): 7075.

doi: 10.1073/pnas.0832308100
[5]
He G S, Tan L S, Zheng Q D, Prasad P N. Chem. Rev., 2008, 108(4): 1245.

doi: 10.1021/cr050054x
[6]
Kim H M, Cho B R. Acc. Chem. Res., 2009, 42(7): 863.

doi: 10.1021/ar800185u
[7]
Lim C S, Cho B R. BMB Rep., 2013, 46(4): 188.

doi: 10.5483/BMBRep.2013.46.4.045
[8]
Fu Y H, Finney N S. RSC Adv., 2018, 8(51): 29051.

doi: 10.1039/C8RA02297F
[9]
Wu L L, Liu J H, Li P, Tang B, James T D. Chem. Soc. Rev., 2021, 50(2): 702.

doi: 10.1039/D0CS00861C
[10]
Kim H M, Cho B R. Chem. Asian J., 2011, 6(1): 58.

doi: 10.1002/asia.201000542
[11]
Lee H J, Cho C W, Seo H, Singha S, Jun Y W, Lee K H, Jung Y, Kim K T, Park S, Bae S C, Ahn K H. Chem. Commun., 2016, 52(1): 124.

doi: 10.1039/C5CC06976A
[12]
Lim C S, Han J H, Kim C W, Kang M Y, Kang D W, Cho B R. Chem. Commun., 2011, 47(25): 7146.

doi: 10.1039/c1cc11568e
[13]
Kim H, Kim B, Hong J, Park J S, Lee K, Cho B. Angew. Chem. Int. Ed., 2007, 46(39): 7445.

doi: 10.1002/anie.200701720
[14]
Kim H, Jung C, Kim B, Jung S Y, Hong J, Ko Y G, Lee K, Cho B. Angew. Chem. Int. Ed., 2007, 46(19): 3460.

doi: 10.1002/anie.200700169
[15]
Kim M, Lim C, Hong J, Han J, Jang H Y, Kim H, Cho B. Angew. Chem. Int. Ed., 2010, 49(2): 364.
[16]
Zhang M, Gao Y H, Li M Y, Yu M X, Li F Y, Li L, Zhu M W, Zhang J P, Yi T, Huang C H. Tetrahedron Lett., 2007, 48(21): 3709.

doi: 10.1016/j.tetlet.2007.03.112
[17]
Li X, Li Z, Yang Y W. Adv. Mater., 2018, 30: e1800177.
[18]
Lim C S, Kang D W, Tian Y S, Han J H, Hwang H L, Cho B R. Chem. Commun., 2010, 46: 2388.

doi: 10.1039/b922305c
[19]
Li W Y, Fang B Q, Jin M, Tian Y. Anal. Chem., 2017, 89(4): 2553.

doi: 10.1021/acs.analchem.6b04781
[20]
Fu Y, Ding C Q, Zhu A W, Deng Z F, Tian Y, Jin M. Anal. Chem., 2013, 85(24): 11936.

doi: 10.1021/ac403527c
[21]
Pond S J K, Tsutsumi O, Rumi M, Kwon O, Zojer E, BrÉdas J L, Marder S R, Perry J W. J. Am. Chem. Soc., 2004, 126(30): 9291.

doi: 10.1021/ja049013t
[22]
Zhou L Y, Wang Q Q, Zhang X B, Tan W H. Anal. Chem., 2015, 87(8): 4503.

doi: 10.1021/acs.analchem.5b00505
[23]
Sarkar A R, Heo C H, Xu L, Lee H W, Si H Y, Byun J W, Kim H M. Chem. Sci., 2016, 7(1): 766.

doi: 10.1039/C5SC03708E
[24]
Park H J, Lim C S, Kim E S, Han J H, Lee T H, Chun H J, Cho B R. Angew. Chem. Int. Ed., 2012, 51(11): 2673.

doi: 10.1002/anie.201109052
[25]
Yin J L, Peng M, Lin W Y. Chem. Commun., 2019, 55(74): 11063.

doi: 10.1039/C9CC04739E
[26]
Yin J L, Peng M, Lin W Y. Anal. Chem., 2019, 91(13): 8415.

doi: 10.1021/acs.analchem.9b01293
[27]
Zhang W, Li P, Yang F, Hu X F, Sun C Z, Zhang W, Chen D Z, Tang B. J. Am. Chem. Soc., 2013, 135(40): 14956.

doi: 10.1021/ja408524j pmid: 24059644
[28]
Chen L Y, Cho M K, Wu D, Kim H M, Yoon J. Anal. Chem., 2019, 91(22): 14691.

doi: 10.1021/acs.analchem.9b03937
[29]
Masanta G, Heo C H, Lim C S, Bae S K, Cho B R, Kim H M. Chem. Commun., 2012, 48(29): 3518.

doi: 10.1039/c2cc00034b
[30]
Li Y, Shu Y Z, Liang M W, Xie X L, Jiao X Y, Wang X, Tang B Z. Angew. Chem. Int. Ed., 2018, 57(38): 12415.

doi: 10.1002/anie.201805806
[31]
Mao Z Q, Ye M T, Hu W, Ye X X, Wang Y Y, Zhang H J, Li C Y, Liu Z H. Chem. Sci., 2018, 9(28): 6035.

doi: 10.1039/C8SC01697F
[32]
Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134(42): 17486.

doi: 10.1021/ja308967u
[33]
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.

doi: 10.1016/j.cclet.2019.07.051
[34]
Seo E W, Han J H, Heo C H, Shin J H, Kim H M, Cho B R. Chem. Eur. J., 2012, 18(39): 12388.

doi: 10.1002/chem.201201197
[35]
Mao Z Q, Feng W Q, Li Z, Zeng L Y, Lv W, Liu Z H. Chem. Sci., 2016, 7(8): 5230.

doi: 10.1039/C6SC01313A
[36]
Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135(26): 9915.

doi: 10.1021/ja404004v
[37]
Jiao X Y, Xiao Y S, Li Y, Liang M W, Xie X L, Wang X, Tang B. Anal. Chem., 2018, 90(12): 7510.

doi: 10.1021/acs.analchem.8b01106
[38]
Hu M Y, Li L, Wu H, Su Y, Yang P Y, Uttamchandani M, Xu Q H, Yao S Q. J. Am. Chem. Soc., 2011, 133(31): 12009.

doi: 10.1021/ja200808y
[39]
Ge L H, Liu Z C, Tian Y. Chem. Sci., 2020, 11(8): 2215.

doi: 10.1039/C9SC05256A
[40]
Li W, Yin S L, Gong X Y, Xu W, Yang R H, Wan Y C, Yuan L, Zhang X B. Chem. Commun., 2020, 56(9): 1349.

doi: 10.1039/C9CC08672B
[41]
Wang C, Song X B, Xiao Y. ChemBioChem, 2017, 18(17): 1762.

doi: 10.1002/cbic.201700161
[42]
Wang X H, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bondar M V, Belfield K D. J. Am. Chem. Soc., 2010, 132(35): 12237.

doi: 10.1021/ja1057423
[43]
Son J H, Lim C S, Han J H, Danish I A, Kim H M, Cho B R. J. Org. Chem., 2011, 76(19): 8113.

doi: 10.1021/jo201504h
[44]
Li X S, Jiang M J, Lam J W Y, Tang B Z, Qu J Y. J. Am. Chem. Soc., 2017, 139(47): 17022.

doi: 10.1021/jacs.7b06273
[45]
Zhang X F, Wang C, Jin L J, Han Z, Xiao Y. ACS Appl. Mater. Interfaces, 2014, 6(15): 12372.

doi: 10.1021/am503849c
[1] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[2] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[3] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[4] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[7] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[8] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[9] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[10] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[11] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[12] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[13] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[14] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[15] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.