中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 868-882 DOI: 10.7536/PC200658 Previous Articles   Next Articles

• Original article •

Red/Near-Infrared Biothiol Fluorescent Probes

Yecheng Dang1, Yangzhen Feng1, Dugang Chen1,*()   

  1. 1 Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
  • Received: Revised: Online: Published:
  • Contact: Dugang Chen
  • Supported by:
    National Natural Science Foundation of China(51703171); Graduate Innovative Fund of Wuhan Institute of Technology(CX2019003)
Richhtml ( 50 ) PDF ( 976 ) Cited
Export

EndNote

Ris

BibTeX

Small molecular biothiols, including cysteine(Cys), homocysteine(Hcy), and glutathione(GSH), play an import role in physiological and pathological processes. The abnormal levels of biothiols in cells and organisms are closely relevant to various kinds of diseases. Therefore, the detection of biothiols is of great importance. In recent years, the fluorescent probe has shown favorable advantages compared to various other detecting techniques, owing to its facile operation, high temporal-spatial resolution, low destructiveness and visualization. Among the numerous reported thiol fluorescent probes, the probes with red/near-infrared(NIR) emission signal are especially concerned, because of the low background interferences, less disturbance by Raman scattering, deeper penetration depth and less photodamage to biological tissues. All these features endow the thiol fluorescent probes with better properties in cell imaging and great potential in in vivo imaging. Here, we mainly review the paper published in recent three years concerning a variety of thiol fluorescent probes with red or NIR emission. The probes are classified according to their fluorogens, with six kinds described here: rhodamine, BODIPY, cyanine, natural pigment(anthocyanidins and curcumin), donor-acceptor(D-A) conjugated molecules and fluorophores with aggregation induced-emission(AIE). We discuss the molecular design, fluorescent property, recognition mechanism and bioimaging application of each probe. At the same time, the unsolved problems and the prospect of biothiol fluorescent probes with long wavelength emission are also presented.

Contents

1 Introduction

2 Rhodamine-based biothiol fluorescent probes

3 BODIPY-based biothiol fluorescent probes

4 Cyanine-based biothiol fluorescent probes

4.1 Cy7-based biothiol fluorescent probes

4.2 Hemicyanines-based biothiol fluorescent probes

5 Natural pigments-based biothiol fluorescent probes

5.1 Anthocyanin-based biothiol fluorescent probes

5.2 Curcumin-based biothiol fluorescent probes

6 D-A compound-based biothiol fluorescent probes

7 AIE-based biothiol fluorescent probes

8 Conclusion and outlook

Fig. 1 Molecular structures of cysteine, homocysteine and glutathione
Fig. 2 The structure of rhodamine
Fig. 3 Recognition mechanism of probe 1 with Cys/Hcy[30]
Fig. 4 A: Fluorescence imaging for Cys in MCF-7 cells with and without H2O2 treatment; B: Fluorescence imaging for Cys in D. magna. Reproduced from Ref. 30. Copyright 2019, American Chemical Society[30]
Fig. 5 Recognition mechanism of probe 2 with Cys/GSH[31]
Fig. 6 Recognition mechanism of probe 3 with GSH[32]
Fig. 7 Recognition mechanism of probe 4 with Cys[33]
Fig. 8 The structure of BODIPY
Fig. 9 Recognition mechanism of probe 5 with GSH[36]
Fig. 10 Recognition mechanism of probe 6 with GSH[37]
Fig. 11 Molecular structures of probes 7~9[38?~40]
Fig. 12 The structure of cyanine
Fig. 13 Recognition mechanism of probe 10 with GSH[44]
Fig. 14 Molecular structures of probes 11~13[45?~47]
Fig. 15 The structure of hemicyanines
Fig. 16 Recognition mechanism of probe 14 with GSH[49]
Fig. 17 Molecular structures of probes 15 and 16[50,51]
Fig. 18 Recognition mechanism of probe 17 with Cys[52]
Fig. 19 Recognition mechanism of probe 18 with Cys[53]
Fig. 20 The structure of anthocyanin
Fig. 21 Recognition mechanism of probe 19, 20 with Cys[55,56]
Fig. 22 The structure of curcumin
Fig. 23 Recognition mechanism of probes 21, 22 with biothiols[59,60]
Fig. 24 The structure of triphenylamine,dimethylamino,2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)malononitrile,isophorone,dicyanoisophoro[61?~63]
Fig. 25 Recognition mechanism of probe 23 with Cys[64]
Fig. 26 Molecular structures of probes 24, 25[65,66]
Fig. 27 Molecular structures of probes 26, 27[67,68]
Fig. 28 The structure of tetraphenylene
Fig. 29 Schematic illustration of probe 28 with GSH[75]
Fig. 30 Two-photon excitation fluorescence imaging for GSH in fish larva. Reproduced from Ref. 75. Copyright 2019, American Chemical Society[75]
Fig. 31 Schematic illustration of probe 29 with Cys[76]
[1]
Wang B J, Liu R J, Fang J G, Wang Y W, Peng Y. Chem. Commun., 2019, 55(78):11762.

doi: 10.1039/C9CC06468K
[2]
Chen D G, Long Z, Dang Y C, Chen L. Anal., 2018, 143(23):5779.

doi: 10.1039/C8AN01657G
[3]
Long Z, Chen L, Dang Y C, Chen D G, Lou X D, Xia F. Talanta, 2019, 204:762.

doi: S0039-9140(19)30689-7 pmid: 31357363
[4]
Tian M, Liu X Y, He H, Ma X Z, Liang C, Liu Y, Jiang F L. Anal. Chem., 2020, 92(14):10068.

doi: 10.1021/acs.analchem.0c01881
[5]
Yang Y T, Zhou T T, Jin M, Zhou K Y, Liu D D, Li X, Huo F J, Li W, Yin C X. J. Am. Chem. Soc., 2020, 142:1614.

doi: 10.1021/jacs.9b12629
[6]
Gates T M, Cysique L A, Siefried K J, Chaganti J, Moffat K J, Brew B J. AIDS, 2016, 30(4):591.

doi: 10.1097/QAD.0000000000000951
[7]
Wang L, Ren M G, Li Z H, Dai L X, Lin W Y. Anal. Methods, 2019, 11(34):4323.

doi: 10.1039/C9AY01167F
[8]
Wang S G, Yin H H, Huang Y, Guan X M. Anal. Chem., 2018, 90(13):8170.

doi: 10.1021/acs.analchem.8b01469
[9]
Chen S, Dong Z P, Cheng M, Zhao Y Q, Wang M Y, Sai N, Wang X, Liu H, Huang G W, Zhang X M. J. Neuroinflammation, 2017, 14:187.

doi: 10.1186/s12974-017-0963-x
[10]
Jiang Y Q, Ji X R, Zhang C Y, Xi Z, Sun L, Yi L. Org. Biomol. Chem., 2019, 17(36):8435.

doi: 10.1039/C9OB01535C
[11]
Zeng H H, Zhou Z Y, Liu F, Deng J, Huang S Y, Li G P, Lai P Q, Xie Y P, Xiao W. Anal., 2019, 144(24):7368.

doi: 10.1039/C9AN01518C
[12]
Jin X, Kang S, Tanaka S, Park S. Angew. Chem. Int. Ed., 2016, 55:7939.

doi: 10.1002/anie.201601026
[13]
Zhang Y D, Wang X, Bai X Y, Li P, Su D, Zhang W, Zhang W, Tang B. Anal. Chem., 2019, 91(13):8591.

doi: 10.1021/acs.analchem.9b01878
[14]
Du Q Q, Hu X, Zhang X D, Cao H Y, Huang Y M. Anal. Methods, 2019, 11(27):3446.

doi: 10.1039/C9AY00999J
[15]
Song K, Kai R, Lu C W, Gao L H, Wang G Y, Guo L Q. Sensor Actuat. B: Chem., 2016, 236:249.

doi: 10.1016/j.snb.2016.06.005
[16]
Yin C X, Xiong K M, Huo F J, Salamanca J C, Strongin R M. Angew. Chem. Int. Ed., 2017, 56(43):13188.

doi: 10.1002/anie.201704084
[17]
Peng H P, Jian M L, Huang Z N, Wang W J, Deng H H, Wu W H, Liu A L, Xia X H, Chen W. Biosens. Bioelectron., 2018, 105:71.

doi: 10.1016/j.bios.2018.01.021
[18]
Wang Y, Zhang C H, Zheng Y H, Ge Y, Yu X Y. Anal. Lett., 2019, 52(9):1487.

doi: 10.1080/00032719.2018.1548020
[19]
Dang Y C, Chen L, Yuan L, Li J B, Chen D G. ChemistrySelect, 2020, 5:584.

doi: 10.1002/slct.v5.2
[20]
Kailass K, Sadovski O, Capello M, Kang Y A, Fleming J B, Hanash S M, Beharry A A. Chem. Sci., 2019, 10(36):8428.

doi: 10.1039/C9SC00283A
[21]
Hou L L, Ning P, Feng Y, Ding Y Q, Bai L, Li L, Yu H Z, Meng X M. Anal. Chem., 2018, 90(12):7122.

doi: 10.1021/acs.analchem.8b01631
[22]
Ren T B, Xu W, Zhang W, Zhang X X, Wang Z Y, Xiang Z, Yuan L, Zhang X B. J. Am. Chem. Soc., 2018, 140(24):7716.

doi: 10.1021/jacs.8b04404
[23]
Fang X N, Zheng Y Z, Duan Y K, Liu Y, Zhong W W. Anal. Chem., 2019, 91(1):482.

doi: 10.1021/acs.analchem.8b05303
[24]
Kim K H, Singha S, Jun Y W, Reo Y J, Kim H R, Ryu H G, Bhunia S, Ahn K H. Chem. Sci., 2019, 10(39):9028.

doi: 10.1039/C9SC02287B
[25]
Wu Y L, Huang S L, Wang J, Sun L H, Zeng F, Wu S Z. Nat. Commun., 2018, 9:3983.

doi: 10.1038/s41467-018-06499-1
[26]
Liu X J, Zhang Q Y, Wang F L, Jiang J H. Anal., 2019, 144(20):5980.

doi: 10.1039/C9AN01303B
[27]
Wang R C, Chen J, Gao J, Chen J A, Xu G, Zhu T L, Gu X F, Guo Z Q, Zhu W H, Zhao C C. Chem. Sci., 2019, 10(30):7222.

doi: 10.1039/C9SC02093D
[28]
Wang L L, Du W, Hu Z J, Uvdal K, Li L, Huang W. Angew. Chem. Int. Ed., 2019, 58(40):14026.

doi: 10.1002/anie.v58.40
[29]
Chen X Q, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112(3):1910.

doi: 10.1021/cr200201z
[30]
Yang M W, Fan J L, Sun W, Du J J, Peng X J. Anal. Chem., 2019, 91(19):12531.

doi: 10.1021/acs.analchem.9b03386
[31]
Liu J, Liu M X, Zhang H X, Wei X H, Wang J J, Xian M, Guo W. Chem. Sci., 2019, 10(43):10065.

doi: 10.1039/C9SC02618E
[32]
Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat. Chem., 2017, 9(3):279.

doi: 10.1038/nchem.2648
[33]
Xia S, Zhang Y B, Fang M X, Mikesell L, Steenwinkel T E, Wan S L, Phillips T, Luck R L, Werner T, Liu H Y. ChemBioChem, 2019, 20(15):1986.

doi: 10.1002/cbic.v20.15
[34]
Porubský M, Gurská S, Stanková J, Hajdúch M, Džubák P, Hlaváč J. RSC Adv., 2019, 9(43):25075.

doi: 10.1039/C9RA03472B
[35]
Kowada T, Maeda H, Kikuchi K. Chem. Soc. Rev., 2015, 44(14):4953.

doi: 10.1039/C5CS00030K
[36]
Chen J A, Zhang Z Y, Gao J, Tan J H, Gu X F. Tetrahedron Lett., 2019, 60(18):1226.

doi: 10.1016/j.tetlet.2019.03.051
[37]
Huang C M, Qian Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 217:68.

doi: 10.1016/j.saa.2019.03.042
[38]
Wang C J, Xia X, Luo J R, Qian Y. Dye. Pigment., 2018, 152:85.

doi: 10.1016/j.dyepig.2018.01.034
[39]
Xia X, Qian Y, Shen B X. J. Mater. Chem. B, 2018, 6(19):3023.

doi: 10.1039/C7TB03321D
[40]
Wang F F, Fan X Y, Liu Y J, Gao T, Huang R, Jiang F L, Liu Y. Dye. Pigment., 2017, 145:451.

doi: 10.1016/j.dyepig.2017.06.033
[41]
McNamara L E, Rill T A, Huckaba A J, Ganeshraj V, Gayton J, Nelson R A, Sharpe E A, Dass A, Hammer N I, Delcamp J H. Chem. Eur. J., 2017, 23(51):12494.

doi: 10.1002/chem.v23.51
[42]
Williams C G. Proc. R. Soc. Edinb., 1857, 3:370.

doi: 10.1017/S0370164600028558
[43]
Mishra A, Behera R K, Behera P K, Mishra B K, Behera G B. Chem. Rev., 2000, 100(6):1973.

doi: 10.1021/cr990402t
[44]
Xu Y, Li R X, Zhou X J, Li W Q, Ernest U, Wan H, Li L, Chen H Y, Yuan Z W. Talanta, 2019, 205:120125.

doi: 10.1016/j.talanta.2019.120125
[45]
Xu Z Q, Zhang M X, Xu Y, Liu S H, Zeng L T, Chen H Y, Yin J. Sens. Actuators, B, 2019, 290:676.
[46]
Xu Z Q, Huang X T, Han X, Wu D, Zhang B B, Tan Y, Cao M J, Liu S H, Yin J, Yoon J. Chem, 2018, 4(7):1609.

doi: 10.1016/j.chempr.2018.04.003
[47]
Yang X J, Wang Y Y, Zhao M X, Yang W. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 212:10.

doi: 10.1016/j.saa.2018.12.042
[48]
Sun W, Guo S G, Hu C, Fan J L, Peng X J. Chem. Rev., 2016, 116(14):7768.

doi: 10.1021/acs.chemrev.6b00001
[49]
Ren M H, Wang L F, Lv X, Sun Y Q, Chen H, Zhang K Y, Wu Q, Bai Y R, Guo W. Anal., 2019, 144(24):7457.

doi: 10.1039/C9AN01852B
[50]
Yang Y, Wang Y Z, Feng Y, Cao C, Song X R, Zhang G L, Liu W S. J. Mater. Chem. B, 2019, 7(48):7723.

doi: 10.1039/c9tb01645g pmid: 31746929
[51]
Lin X, Hu Y L, Yang D L, Chen B. Dye. Pigment., 2020, 174:107956.

doi: 10.1016/j.dyepig.2019.107956
[52]
Wang H, Zhang Y X, Yang Y Y, He Z X, Wu C C, Zhang W, Zhang W, Liu J, Li P, Tang B. Chem. Commun., 2019, 55(65):9685.

doi: 10.1039/c9cc03814k
[53]
Zhang S P, Cai F Y, Hou B, Chen H, Gao C J, Shen X C, Liang H. New J. Chem., 2019, 43(17):6696.

doi: 10.1039/C9NJ00260J
[54]
Sinopoli A, Calogero G, Bartolotta A. Food Chem., 2019, 297:124898.

doi: 10.1016/j.foodchem.2019.05.172
[55]
Liu D J, Lv Y, Chen M, Cheng D, Song Z L, Yuan L, Zhang X B. J. Mater. Chem. B, 2019, 7:3970.

doi: 10.1039/C9TB00652D
[56]
Jiao S, He X, Xu L B, Ma P Y, Liu C M, Huang Y B, Sun Y, Wang X H, Song D Q. Sensor Actuat. B: Chem., 2019, 290:47.

doi: 10.1016/j.snb.2019.03.119
[57]
Rai M, Ingle A P, Pandit R, Paralikar P, Anasane N, Santos C A D. Expert. Rev. Anti-Infect. Ther., 2020, 18(4):367.

doi: 10.1080/14787210.2020.1730815
[58]
Luis P B, Boeglin W E, Schneider C. Chem. Res. Toxicol., 2018, 31(4):269.

doi: 10.1021/acs.chemrestox.7b00326
[59]
Chen D G, Yang J L, Dai J, Lou X D, Zhong C, Yu X L, Xia F. J. Mater. Chem. B, 2018, 6(32):5248.

doi: 10.1039/C8TB01340C
[60]
Chen D G, Long Z, Dang Y C, Chen L. Dye. Pigment., 2019, 166:266.

doi: 10.1016/j.dyepig.2019.03.051
[61]
Chen X Q, Zhou Y, Peng X J, Yoon J. Chem. Soc. Rev., 2010, 39(6):2120.

doi: 10.1039/b925092a
[62]
Chen M, Chen R, Shi Y, Wang J G, Cheng Y H, Li Y, Gao X D, Yan Y, Sun J Z, Qin A J, Kwok R T K, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2018, 28(6):1704689.

doi: 10.1002/adfm.v28.6
[63]
Wang K, Leng T H, Liu Y J, Wang C Y, Shi P, Shen Y J, Zhu W H. Sensor Actuat. B: Chem., 2017, 248:338.

doi: 10.1016/j.snb.2017.03.127
[64]
Han C Y, Song B, Liang X, Pan H, Dong W. Anal. Methods, 2019, 11(19):2513.

doi: 10.1039/C9AY00708C
[65]
Chen D G, Long Z, Sun Y M, Luo Z J, Lou X D. J. Photochem. Photobiol. A: Chem., 2019, 368:90.

doi: 10.1016/j.jphotochem.2018.09.030
[66]
Dai Y P, Xue T Z, Zhang X X, Misal S, Ji H F, Qi Z J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 216:365.

doi: 10.1016/j.saa.2019.03.055
[67]
Zhang W, Liu J, Yu Y W, Han Q R, Cheng T, Shen J, Wang B X, Jiang Y L. Talanta, 2018, 185:477.

doi: S0039-9140(18)30350-3 pmid: 29759230
[68]
Zhou J L, Xu S, Dong X C, Zhao W L, Zhu Q G. Dye. Pigment., 2019, 167:157.

doi: 10.1016/j.dyepig.2019.04.020
[69]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Tang B Z, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B. Chem. Commun., 2001, (18):1740.

pmid: 12240292
[70]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21):11718.

doi: 10.1021/acs.chemrev.5b00263
[71]
Cai X L, Liu B. Angew. Chem. Int. Ed., 2020, 59:9868.

doi: 10.1002/anie.v59.25
[72]
Pan L X, Cai Y J, Wu H Z, Zhou F, Qin A J, Wang Z M, Tang B Z. Mater. Chem. Front., 2018, 2(7):1310.

doi: 10.1039/C7QM00551B
[73]
Zhao Z, Gao S M, Zheng X Y, Zhang P F, Wu W T, Kwok R T K, Xiong Y, Leung N L C, Chen Y C, Gao X K, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2018, 28(11):1705609.

doi: 10.1002/adfm.v28.11
[74]
Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Mater. Chem. Front., 2017, 1(8):1573.

doi: 10.1039/C7QM00076F
[75]
Gu Y, Zhao Z, Niu G L, Zhang R Y, Zhang H, Shan G G, Feng H T, Kwok R T K, Lam J W Y, Yu X Q, Tang B Z. ACS Appl. Bio Mater., 2019, 2(7):3120.

doi: 10.1021/acsabm.9b00447
[76]
Huang Y H, Mei J, Ma X. Dye. Pigment., 2019, 165:499.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[5] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[6] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[7] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[8] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[9] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[10] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[11] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[12] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[13] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[14] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[15] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.