中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1461-1472 DOI: 10.7536/PC200829   Next Articles

• Review •

Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants

Bin Li1,2, Yanyan Fu1,3(), Jiangong Cheng1,3()   

  1. 1 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 200050, China
    2 School of Physical Science and Technology, ShanghaiTech University,Shanghai 201210, China
    3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Yanyan Fu, Jiangong Cheng
  • Supported by:
    Research Programs from Ministry of Science and Technology of China(2016YFA0200804); National Natural Science Foundation of China(62022085); National Natural Science Foundation of China(61831021); National Natural Science Foundation of China(61771460); National Natural Science Foundation of China(61901456); National Natural Science Foundation of China(51641307)
Richhtml ( 86 ) PDF ( 926 ) Cited
Export

EndNote

Ris

BibTeX

Organophosphorus nerve agents are a kind of chemical weapon with great killing power, which paralyze the central nervous system of human body by destroying the neurotransmitter acetylcholinesterase. A very small dose can cause death. Therefore, it is of great significance for the rapid and simple detection of organophosphorus nerve agents. Fluorescence chemical sensing has the advantages of high sensitivity, good selectivity, and short response time. In recent years, the detection of organophosphorus nerve agents and their simulants using fluorescent sensing methods has attracted increasing attention. In this paper, the principle of fluorescence sensing is briefly introduced, and various new fluorescent materials and methods developed by researchers at home and abroad in recent years for the detection of organophosphorus nerve agents and simulants are reviewed. The prospect of the application of fluorescence sensing methods in the detection of organophosphorus nerve agents is also discussed.

Contents

1 Introduction

2 Fluorescence detection of organophosphorus nerve agents and simulants

2.1 Nitrogen-based nucleophiles

2.2 Oxygen-based nucleophiles

2.3 Nitrogen-oxygen bifunctional nucleophiles

3 Conclusion and outlook

Fig.1 Structure of organophosphorus nerve agents and simulants[15]
Fig.2 Fluorescent probes based on N functional group
Fig.3 Reaction of probe 1 and DCP[21]
Fig.4 Schematic diagram of DCP detection by probe 6[26]
Fig.5 Reaction of probe 8 and DCP[28]
Fig.6 Schematic representation of amplified ratiometric fluorescence detection of DCP using probe 16 nanofibers[36]
Fig.7 Fluorescent probes based on O functional group
Fig.8 Schematic illustration of the PDA liposome-based organophosphate detection strategy[42]
Fig.9 Reaction of probe 23 and DCP[18]
Fig.10 Reaction of probe 25 and DCP, DEMP & DECP[44]
Fig.11 Reaction of probe 35 and DCP[54]
Fig.12 Reaction of probe 42 and DCP[61]
Fig.13 Fluorescent probes based on N,O bifunctional group
Fig.14 Reaction of probe 53 and DCP[72]
Fig.15 Reaction of probe 57 and DCP[76]
[1]
Costanzi S, Machado J H, Mitchell M. ACS Chem. Neurosci., 2018, 9: 873.

doi: 10.1021/acschemneuro.8b00148 pmid: 29664277
[2]
Delfino R T, Ribeiro T S, Figueroa-Villar J D. J. Braz. Chem. Soc., 2009, 20: 407.
[3]
Gupta R C. Handbook of Toxicology Of Chemical Warfare Agents. London: Academic Press, 2009.
[4]
Ehrich M. Organophosphates, in Encyclopedia of Toxicology. San Diego: Academic Press, 1998. 467.
[5]
Ohbu S, Yamashina A, Takasu N, Yamaguchi T, Murai T, Nakano K, Matsui Y, Mikami R, Sakurai K, Hinohara S. South. Med. J., 1997, 90: 587.

pmid: 9191733
[6]
John H, van der Schans M J, Koller M, Spruit H E T, Worek F, Thiermann H, Noort D. Forensic Toxicol., 2018, 36: 61.

doi: 10.1007/s11419-017-0376-7
[7]
Buteau C, Duitschaever C L, Ashton G C. J. Chromatogr. A, 1984, 284: 201.

doi: 10.1016/S0021-9673(01)87816-X
[8]
Pietsch J, Hampel S, Schmidt W, Brauch H J, Worch E. Fresenius J. Anal. Chem., 1996, 355: 164.
[9]
Walker J P, Asher S A. Anal. Chem., 2005, 77: 1596.

doi: 10.1021/ac048562e
[10]
Liu G, Lin Y. Anal. Chem., 2006, 78: 835.

doi: 10.1021/ac051559q
[11]
Hill H H, Martin S J. Pure Appl. Chem., 2002, 74: 2281.

doi: 10.1351/pac200274122281
[12]
Brown K. Science, 2004, 305: 1228.

doi: 10.1126/science.305.5688.1228
[13]
Hakonen A, Rindzevicius T, Schmidt M S, Andersson P O, Juhlin L, Svedendahl M, Boisen A, Kall M. Nanoscale, 2016, 8: 1305.

doi: 10.1039/c5nr06524k pmid: 26676552
[14]
Zhou X, Lee S, Xu Z, Yoon J. Chem. Rev., 2015, 115: 7944.

doi: 10.1021/cr500567r pmid: 25651137
[15]
Fan S Q, Zhang G R, Dennison G H, FitzGerald N, Burn P L, Gentle I R, Shaw P E. Adv. Mater., 2020, 32: 11.
[16]
Giri D, Patra S K. RSC Adv., 2015, 5: 79011.

doi: 10.1039/C5RA14079J
[17]
Jung H S, Verwilst P, Kim W Y, Kim J S. Chem. Soc. Rev., 2016, 45: 1242.

doi: 10.1039/C5CS00494B
[18]
Hao H, Luo H, Yi A, Liu C, Xu B, Shi G, Chi Z. Org. Electron., 2019, 69: 281.

doi: 10.1016/j.orgel.2019.03.029
[19]
Xuan W, Cao Y, Zhou J, Wang W. Chem. Commun., 2013, 49: 10474.

doi: 10.1039/c3cc46095a
[20]
Wu J, Zou Y, Li C, Sicking W, Piantanida I, Yi T, Schmuck C. J. Am. Chem. Soc., 2012, 134: 1958.

doi: 10.1021/ja2103845
[21]
Bencic-Nagale S, Sternfeld T, Walt D R. J. Am. Chem. Soc., 2006, 128: 5041.

pmid: 16608338
[22]
Singh V V, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, Wang J. Chem. Commun., 2015, 51: 11190.

doi: 10.1039/C5CC04120A
[23]
Díaz de Grenu B, Moreno D, Torroba T, Berg A, Gunnars J, Nilsson T, Nyman R, Persson M, Pettersson J, Eklind I, Wasterby P. J. Am. Chem. Soc., 2014, 136: 4125.

doi: 10.1021/ja500710m
[24]
Sarkar S, Shunmugam R. Chem. Commun., 2014, 50: 8511.

doi: 10.1039/C4CC03361B
[25]
Yadav P, Gill H S, Chand K, Li L, Kumar J, Sharma S K. Sensors, 2015, 15.
[26]
Yao J, Fu Y, Xu W, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J. Anal. Chem., 2016, 88: 2497.

doi: 10.1021/acs.analchem.5b04777
[27]
Kim Y, Jang Y J, Lee D, Kim B S, Churchill D G. Sens. Actuat. B: Chem., 2017, 238: 145.

doi: 10.1016/j.snb.2016.07.056
[28]
So H S, Angupillai S, Son Y A. Sens. Actuators B Chem., 2016, 235: 447.

doi: 10.1016/j.snb.2016.05.106
[29]
Zhou X, Zeng Y, Liyan C, Wu X, Yoon J. Angew. Chem. Int. Ed., 2016, 55: 4729.

doi: 10.1002/anie.201601346
[30]
Huang S, Wu Y, Zeng F, Sun L, Wu S. J. Mater. Chem. C, 2016, 4: 10105.

doi: 10.1039/C6TC03116A
[31]
Khan M S J, Wang Y W, Senge M O, Peng Y. J. Hazard. Mater., 2018, 342: 10.

doi: 10.1016/j.jhazmat.2017.08.009
[32]
Cai Y C, Li C, Song Q H. ACS Sensors, 2017, 2: 834.

doi: 10.1021/acssensors.7b00205
[33]
Jiang H, Wu P, Zhang Y, Jiao Z, Xu W, Zhang X, Fu Y, He Q, Cao H, Cheng J. Anal. Methods, 2017, 9: 1748.

doi: 10.1039/C6AY03427F
[34]
Aich K, Das S, Gharami S, Patra L, Kumar Mondal T. New J. Chem., 2017, 41: 12562.

doi: 10.1039/C7NJ02543B
[35]
Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J. ACS Sensors, 2018, 3: 1445.

doi: 10.1021/acssensors.8b00313
[36]
Sun C, Xiong W, Ye W, Zheng Y, Duan R, Che Y, Zhao J. Anal. Chem., 2018, 90: 7131.

doi: 10.1021/acs.analchem.8b01810
[37]
Dey N, Jha S, Bhattacharya S. Analyst, 2018, 143: 528.

doi: 10.1039/C7AN01058C
[38]
Li X, Lv Y, Chang S, Liu H, Mo W, Ma H, Zhou C, Zhang S, Yang B. Anal. Chem., 2019, 91: 10927.

doi: 10.1021/acs.analchem.9b02085
[39]
Zeng L, Zeng H, Jiang L, Wang S, Hou J T, Yoon J. Anal. Chem., 2019, 91: 12070.

doi: 10.1021/acs.analchem.9b03230
[40]
Ghosh A, Das S, Mandal S, Sahoo P. New J. Chem., 2019, 43: 16968.

doi: 10.1039/C9NJ03327K
[41]
Gotor R, Costero A M, Gil S, Parra M, Martinez-Manez R, Sancenón F. Chem. Eur. J., 2011, 17: 11994.

doi: 10.1002/chem.201102241
[42]
Lee J, Seo S, Kim J. Adv. Funct. Mater., 2012, 22: 1632.

doi: 10.1002/adfm.v22.8
[43]
Jang Y J, Murale D P, Churchill D G. Analyst, 2014, 139: 1614.

doi: 10.1039/c3an02267f
[44]
Jang Y J, Tsay O G, Murale D P, Jeong J A, Segev A, Churchill D G. Chem. Commun., 2014, 50: 7531.

doi: 10.1039/C4CC02689F
[45]
Rusu A D, Moleavin I A, Hurduc N, Hamel M, Rocha L. Chem. Commun., 2014, 50: 9965.

doi: 10.1039/C4CC03580A
[46]
Barba-Bon A, Costero A M, Gil S, Martínez-Manez R, Sancenon F. Org. Biomol. Chem., 2014, 12: 8745.

doi: 10.1039/c4ob01299b pmid: 25260024
[47]
Goud D R, Pardasani D, Tak V, Dubey D K. RSC Adv., 2014, 4: 24645.

doi: 10.1039/c4ra02742f
[48]
El Sayed S, Pascual L, Agostini A, Martinez-Manez R, Sancenón F, Costero A M, Parra M, Gil S. ChemistryOpen, 2014, 3: 142.

doi: 10.1002/open.v3.4
[49]
Belger C, Weis J G, Egap E, Swager T M. Macromolecules, 2015, 48: 7990.

doi: 10.1021/acs.macromol.5b01406
[50]
Qi Y Y, Sun X H, Chang X M, Kang R, Liu K Q, Fang Y. Acta Phys.-Chim. Sin., 2016, 32: 373.

doi: 10.3866/PKU.WHXB201511091
[51]
Xu W, Fu Y, Yao J, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J. ACS Sensors, 2016, 1: 1054.

doi: 10.1021/acssensors.6b00366
[52]
Lu Z, Fan W, Shi X, Black C A, Fan C, Wang F. Sens. Actuators B Chem., 2018, 255: 176.

doi: 10.1016/j.snb.2017.08.019
[53]
Manna A, Jana K, Guchhait N, Goswami S. New J. Chem., 2017, 41: 6661.

doi: 10.1039/C7NJ00598A
[54]
Cai Y C, Li C, Song Q H. J. Mater. Chem. C, 2017, 5: 7337.

doi: 10.1039/C7TC02617J
[55]
Kim Y, Jang Y J, Mulay S V, Nguyen T T T, Churchill D G. Chem. Eur. J., 2017, 23: 7785.

doi: 10.1002/chem.v23.32
[56]
Liu X, Gong Y, Zheng Y, Xiong W, Wang C, Wang T, Che Y, Zhao J. Anal. Chem., 2018, 90: 1498.

doi: 10.1021/acs.analchem.7b04698
[57]
Ali S S, Gangopadhyay A, Pramanik A K, Samanta S K, Guria U N, Manna S, Mahapatra A K. Analyst, 2018, 143: 4171.

doi: 10.1039/C8AN01012A
[58]
Liu H, Fu Y, Liu A, Yu Y, He Q, Cao H, Cheng J. Anal. Methods, 2018, 10: 1709.

doi: 10.1039/C8AY00050F
[59]
Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L. Anal. Chim. Acta, 2019, 1076: 125.

doi: 10.1016/j.aca.2019.05.025
[60]
Jung Y, Kim D. Materials, 2019, 12: 2943.

doi: 10.3390/ma12182943
[61]
Wu X, Wu Z, Han S. Chem. Commun., 2011, 47: 11468.

doi: 10.1039/c1cc15250e
[62]
Wu W H, Dong J J, Wang X, Li J, Sui S H, Chen G Y, Liu J W, Zhang M. Analyst, 2012, 137: 3224.

doi: 10.1039/c2an35428d
[63]
Wu Z, Wu X, Yang Y, Wen T B, Han S. Bioorg. Med. Chem. Lett., 2012, 22: 6358.

doi: 10.1016/j.bmcl.2012.08.077
[64]
Goswami S, Manna A, Paul S. RSC Adv., 2014, 4: 21984.

doi: 10.1039/C4RA01060D
[65]
Heo G, Manivannan R, Kim H, Son Y A. Dyes Pigments, 2019, 171: 107712.

doi: 10.1016/j.dyepig.2019.107712
[66]
Li S, Zheng Y, Chen W, Zheng M, Zheng H, Zhang Z, Cui Y, Zhong J, Zhao C. Molecules, 2019, 24: 827.

doi: 10.3390/molecules24050827
[67]
Gotor R, Costero A M, Gavina P, Gil S. Dyes Pigments, 2014, 108: 76.

doi: 10.1016/j.dyepig.2014.04.011
[68]
Lei Z, Yang Y. J. Am. Chem. Soc., 2014, 136: 6594.

doi: 10.1021/ja502945q
[69]
Mahapatra A K, Maiti K, Manna S K, Maji R, Mondal S, Das Mukhopadhyay C, Sahoo P, Mandal D. Chem. Commun., 2015, 51: 9729.

doi: 10.1039/C5CC02991K
[70]
Hu X X, Su Y T, Ma Y W, Zhan X Q, Zheng H, Jiang Y B. Chem. Commun., 2015, 51: 15118.

doi: 10.1039/C5CC04630K
[71]
Balamurugan A, Lee H I. Macromolecules, 2016, 49: 2568.

doi: 10.1021/acs.macromol.6b00309
[72]
Climent E, Biyikal M, Gawlitza K, Dropa T, Urban M, Costero A M, Martinez-Manez R, Rurack K. Sens. Actuators B Chem., 2017, 246: 1056.

doi: 10.1016/j.snb.2017.02.115
[73]
Jang Y J, Mulay S V, Kim Y, Jorayev P, Churchill D G. New J. Chem., 2017, 41: 1653.

doi: 10.1039/C6NJ03712G
[74]
Ali S S, Gangopadhyay A, Maiti K, Mondal S, Pramanik A K, Guria U N, Uddin M R, Mandal S, Mandal D, Mahapatra A K. Org. Biomol. Chem., 2017, 15: 5959.

doi: 10.1039/C7OB01252G
[75]
Lloyd E P, Pilato R S, Van Houten K A. ACS Omega, 2018, 3: 16028.

doi: 10.1021/acsomega.8b02313 pmid: 30556023
[76]
Ali S S, Gangopadhyay A, Pramanik A K, Guria U N, Samanta S K, Mahapatra A K. Dyes Pigments, 2019, 170: 107585.

doi: 10.1016/j.dyepig.2019.107585
[77]
Puglisi R, Pappalardo A, Gulino A, Trusso Sfrazzetto G. ACS Omega, 2019, 4: 7550.

doi: 10.1021/acsomega.9b00502
[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[7] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[10] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[11] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[12] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[13] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[14] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[15] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.