中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 942-957 DOI: 10.7536/PC200869 Previous Articles   Next Articles

• Review •

Reactive Fluorescent Probe for Hypochlorite

Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu*()   

  1. College of Chemistry and Chemical Engineering, Yantai University,Yantai 264005, China
  • Received: Revised: Online: Published:
  • Contact: Zhenbo Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2019QB017); Scientific and Technological Innovation Fund for Postgraduates of Yantai University in 2020(YDYB2010)
Richhtml ( 72 ) PDF ( 800 ) Cited
Export

EndNote

Ris

BibTeX

Hypochlorous acid in organisms is produced from the reaction between chloride ions and hydrogen peroxide(H2O2) catalyzed by myeloperoxidase(MPO). It is one of the most important reactive oxygen species(ROS) in organisms and plays a vital role in physiological processes. However, excessive hypochlorite can lead to a series of physiological diseases, so the effective identification and detection of hypochlorite is favored by researchers. Compared with traditional detection methods, fluorescent probes have many advantages, such as good selectivity, high sensitivity and real-time monitoring, so they have been developed rapidly in recent years. In this paper, based on different fluorophores, the research progress and biological application of hypochlorite fluorescent probes in the last three years are reviewed.

Contents

1 Introduction

2 Hypochlorite fluorescent probes based on different fluorophores

2.1 BODIPY based HClO fluorescent probes

2.2 Fluorescein based HClO fluorescent probes

2.3 Rhodamine based HClO fluorescent probes

2.4 Coumarin based HClO fluorescent probes

2.5 Cyanine based HClO fluorescent probes

2.6 Benzothiazole based HClO fluorescent probes

2.7 Naphthalene dimethylimide based HClO fluorescent probes

2.8 Other HClO fluorescent probe

3 Conclusions and outlook

Fig.1 Structure of BODIPY
Fig.2 Reaction mechanism of probe 1 for HClO and cell imaging[35]
Fig.3 Reaction mechanism of probe 2 for ClO- [36]
Fig.4 Reaction mechanism of probe 3 for HClO[37]
Fig.5 Reaction mechanism of probe 4 for HClO[38]
Fig.6 Reaction mechanism of probe 5 for HClO[39]
Fig.7 Reaction mechanism of probes 6,7,8 for HClO[40]
Fig.8 Reaction mechanism of probe 9 for HClO[41]
Fig.9 Reaction mechanism of probe 10 for ClO-[42]
Fig.10 Structure of fluorescein
Fig.11 Reaction mechanism of probe 11 for HClO[43]
Fig.12 Reaction mechanism of probe 12 for ClO-[44]
Fig.13 Structure of Rhodamine B(left) and Rhodamine 6G(right)
Fig.14 Reaction mechanism of probe 13 for HClO[45]
Fig.15 Reaction mechanism of probe 14 for HClO[46]
Fig.16 Reaction mechanism of probe 15 for HClO[47]
Fig.17 Reaction mechanism of probe 16 for HClO and cell imaging[48]
Fig.18 Reaction mechanism of probe 17 for HClO and cell imaging[49]
Fig.19 Reaction mechanism of probe 18 for HClO[50]
Fig.20 Structure of coumarin
Fig.21 Reaction mechanism of probe 19 for HClO[51]
Fig.22 Reaction mechanism of probe 20 for HClO/ClO-[52]
Fig.23 Reaction mechanism of probe 21 for HClO/ClO-[53]
Fig.24 Reaction mechanism of probe 22 for HClO and cell imaging[54]
Fig.25 Reaction mechanism of probe 23 for HClO[55]
Fig.26 Structure of cyanine dye
Fig.27 Reaction mechanism of probe 24 for NaClO[56]
Fig.28 Reaction mechanism of probe 25 for NaClO[21]
Fig.29 Reaction mechanism of probe 26 for HClO[57]
Fig.30 Structure of benzothiazole
Fig.31 Reaction mechanism of probe 27 for ClO-[62]
Fig.32 Reaction mechanism of probe 28 for HClO[63]
Fig.33 Reaction mechanism of probe 29 for HClO[64]
Fig.34 Reaction mechanism of probe 30 for HClO/ClO-[18]
Fig.35 Reaction mechanism of probe 31 for HClO/ClO-[65]
Fig.36 Structure of 1,8-naphthalimide derivatives
Fig.37 Reaction mechanism of probe 32 for HClO[66]
Fig.38 Reaction mechanism of probe 33 for HClO and cell imaging[67]
Fig.39 Reaction mechanism of probe 34 for HClO and zebrafish imaging[68]
Fig.40 Reaction mechanism of probe 35 for NaClO[69]
Fig.41 Reaction mechanism of probe 36 for HClO and zebrafish imaging[70]
Fig.42 Reaction mechanism of probe 37 for HClO and cell imaging[71]
Fig.43 Reaction mechanism of probes 38 and 39 for HClO[72]
Fig.44 Reaction mechanism of probe 40 for HClO and zebrafish imaging[73]
Fig.45 Reaction mechanism of probe 41 for HClO/ClO- [74]
Fig.46 Reaction mechanism of probe 42 for HClO and mice imaging[75]
Fig.47 Reaction mechanism of probe 43 and 44 for ClO-[76]
Fig.48 Reaction mechanism of probe 45 for HClO[77]
Fig.49 Reaction mechanism of probe 46 for ClO-[78]
Fig.50 Reaction mechanism of probe 47 for HClO and zebrafish imaging[79]
Fig.51 Reaction mechanism of probe 48 for HClO[33]
Fig.52 Reaction mechanism of probe 49 for ClO-[80]
Fig.53 Reaction mechanism of probe 50 for HClO[81]
[1]
Gomes A, Fernandes E, Lima J L F C. J. Biochem. Biophys. Methods, 2005, 65:45.

pmid: 16297980
[2]
Chen X Q, Lee K A, Ren X T, Ryu J C, Kim G, Ryu J H, Lee W J, Yoon J. Nat. Protoc., 2016, 11:1219.

doi: 10.1038/nprot.2016.062
[3]
Prokopowicz Z M, Arce F, Biedron R, Chiang C L L, Ciszek M, Katz D R, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain B M. J. Immunol., 2010, 184:824.

doi: 10.4049/jimmunol.0902606 pmid: 20018624
[4]
Fang F C. Nat. Rev. Microbiol., 2004, 2:820.

doi: 10.1038/nrmicro1004
[5]
Pattison D, Davies M. Curr. Med. Chem., 2006, 13:3271.

pmid: 17168851
[6]
Gorrini C, Harris I S, Mak T W. Nat. Rev. Drug Discov., 2013, 12:931.

doi: 10.1038/nrd4002 pmid: 24287781
[7]
Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40:4783.

doi: 10.1039/c1cs15037e
[8]
Pattison D I, Davies M J. Biochemistry, 2006, 45:8152.

pmid: 16800640
[9]
Xu T S, Li D X, Yan C X, Wu Y W, Yuan C S, Shao X F. Chin. J. Chem., 2019, 37:909.

doi: 10.1002/cjoc.v37.9
[10]
Kenmoku S, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129:7313.

pmid: 17506554
[11]
Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Eur. J., 2012, 18:2700.

doi: 10.1002/chem.201101918
[12]
Xu Q L, Lee K A, Lee S, Lee K M, Lee W J, Yoon J. J. Am. Chem. Soc., 2013, 135:9944.

doi: 10.1021/ja404649m
[13]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138:3769.

doi: 10.1021/jacs.5b12848
[14]
Li K, Hou J T, Yang J, Yu X Q. Chem. Commun., 2017, 53:5539.

doi: 10.1039/C7CC01679D
[15]
Xiao H D, Li J H, Zhao J, Yin G, Quan Y W, Wang J, Wang R Y. J. Mater. Chem. B, 2015, 3:1633.

doi: 10.1039/C4TB02003K
[16]
Zou X M, Liu Y, Zhu X J, Chen M, Yao L M, Feng W, Li F Y. Nanoscale, 2015, 7:4105.

doi: 10.1039/C4NR06407K
[17]
Xu Q L, Heo C H, Kim G, Lee H W, Kim H M, Yoon J. Angew. Chem. Int. Ed., 2015, 54:4890.

doi: 10.1002/anie.201500537
[18]
Wu L L, Yang Q Y, Liu L Y, Sedgwick A C, Cresswell A J, Bull S D, Huang C S, James T D. Chem. Commun., 2018, 54:8522.

doi: 10.1039/C8CC03717E
[19]
Xi L L, Guo X F, Wang C L, Wu W L, Huang M F, Miao J Y, Zhao B X. Sensor Actuat. B: Chem., 2018, 255:666.

doi: 10.1016/j.snb.2017.08.073
[20]
Xing P F, Feng Y X, Niu Y M, Li Q, Zhang Z, Dong L, Wang C M. Chem. Eur. J., 2018, 24:5748.

doi: 10.1002/chem.v24.22
[21]
Zhang X F, Zhao W Y, Li B, Li W Q, Zhang C X, Hou X C, Jiang J, Dong Y Z. Chem. Sci., 2018, 9:8207.

doi: 10.1039/C8SC03226B
[22]
Cheng G H, Fan J L, Sun W, Cao J F, Hu C, Peng X J. Chem. Commun., 2014, 50:1018.

doi: 10.1039/C3CC47864E
[23]
Xiao H D, Xin K, Dou H F, Yin G, Quan Y W, Wang R Y. Chem. Commun., 2015, 51:1442.

doi: 10.1039/C4CC07411D
[24]
Liu C, Jiao X J, He S, Zhao L C, Zeng X S. Talanta, 2017, 174:234.

doi: 10.1016/j.talanta.2017.06.012
[25]
Tian F S, Jia Y, Zhang Y N, Song W, Zhao G J, Qu Z J, Li C Y, Chen Y H, Li P. Biosens. Bioelectron., 2016, 86:68.

doi: 10.1016/j.bios.2016.06.039
[26]
Zhang B B, Yang X P, Zhang R, Liu Y, Ren X L, Xian M, Ye Y, Zhao Y F. Anal. Chem., 2017, 89:10384.

doi: 10.1021/acs.analchem.7b02361
[27]
Wu L, Wu I C, DuFort C C, Carlson M A, Wu X, Chen L, Kuo C T, Qin Y L, Yu J B, Hingorani S R, Chiu D T. J. Am. Chem. Soc., 2017, 139:6911.

doi: 10.1021/jacs.7b01545
[28]
Deng B B, Ren M G, Kong X Q, Zhou K, Lin W Y. Sensor Actuat. B: Chem., 2018, 255:963.

doi: 10.1016/j.snb.2017.08.146
[29]
Zhu H, Fan J L, Wang J Y, Mu H Y, Peng X J. J. Am. Chem. Soc., 2014, 136:12820.

doi: 10.1021/ja505988g
[30]
Fan J L, Mu H Y, Zhu H, Du J J, Jiang N, Wang J Y, Peng X J. Ind. Eng. Chem. Res., 2015, 54:8842.

doi: 10.1021/acs.iecr.5b01904
[31]
Yuan L, Wang L, Agrawalla B K, Park S J, Zhu H, Sivaraman B, Peng J J, Xu Q H, Chang Y T. J. Am. Chem. Soc., 2015, 137:5930.

doi: 10.1021/jacs.5b00042 pmid: 25905448
[32]
Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P. Biosens. Bioelectron., 2018, 107:218.

doi: 10.1016/j.bios.2018.02.023
[33]
Mao Z Q, Ye M T, Hu W, Ye X X, Wang Y Y, Zhang H J, Li C Y, Liu Z H. Chem. Sci., 2018, 9:6035.

doi: 10.1039/C8SC01697F
[34]
Treibs A, Kreuzer F H. Justus Liebigs Ann. Chem., 1968, 718:208.

doi: 10.1002/(ISSN)1099-0690
[35]
Gao Y L, Pan Y, Chi Y, He Y Y, Chen H Y, Nemykin V N. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 206:190.

doi: 10.1016/j.saa.2018.07.090
[36]
Shi W J, Huang Y, Liu W C, Xu D, Chen S T, Liu F G, Hu J Q, Zheng L Y, Chen K. Dye. Pigment., 2019, 170:107566.

doi: 10.1016/j.dyepig.2019.107566
[37]
Gao Y L, Pan Y, He Y Y, Chen H Y, Nemykin V N. Sensor Actuat. B: Chem., 2018, 269:151.

doi: 10.1016/j.snb.2018.04.135
[38]
Jin Y, Lv M, Tao Y F, Xu S, He J L, Zhang J, Zhao W L. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 219:569.

doi: 10.1016/j.saa.2019.04.085
[39]
Sun W, Li M, Fan J L, Peng X J. Acc. Chem. Res., 2019, 52:2818.

doi: 10.1021/acs.accounts.9b00340
[40]
Xu X H, Liu C, Mei Y, Song Q H. J. Mater. Chem. B, 2019, 7:6861.

doi: 10.1039/C9TB01641D
[41]
Duan C, Won M, Verwilst P, Xu J C, Kim H S, Zeng L T, Kim J S. Anal. Chem., 2019, 91:4172.

doi: 10.1021/acs.analchem.9b00224
[42]
Liu S Z, Yang D, Liu Y J, Pan H, Chen H B, Qu X Z, Li H M. Sensor Actuat. B: Chem., 2019, 299:126937.

doi: 10.1016/j.snb.2019.126937
[43]
Zhang C Y, Nie Q C, Ismail I, Xi Z, Yi L. Chem. Commun., 2018, 54:3835.

doi: 10.1039/C8CC01917G
[44]
Peng P P, Li H, Bai L, Wang L L, Chen B X, Yu C M, Zhang C W, Ge J Y, Li L, Huang W. ChemistrySelect, 2018, 3:5981.

doi: 10.1002/slct.v3.21
[45]
Mao G J, Liang Z Z, Bi J, Zhang H, Meng H, Su L, Gong Y J, Feng S, Zhang G. Anal. Chim. Acta, 2018,1048.
[46]
Gong Y J, Lv M K, Zhang M L, Kong Z Z, Mao G J. Talanta, 2019, 192:128.

doi: 10.1016/j.talanta.2018.08.089
[47]
Wang L, Ren M G, Li Z H, Dai L X, Lin W Y. Anal. Methods, 2019, 11:1580.

doi: 10.1039/C9AY00205G
[48]
Hu J W, Zhang X, Liu T T, Gao H W, Lu S L, Uvdal K, Hu Z J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 219:232.

doi: 10.1016/j.saa.2019.04.024
[49]
Li L, Wang S, Lan H X, Gong G Y, Zhu Y F, Tse Y C, Wong K M C. ChemistryOpen, 2018, 7:136.

doi: 10.1002/open.v7.2
[50]
Ren M G, Li Z H, Deng B B, Wang L, Lin W Y. Anal. Chem., 2019, 91:2932.

doi: 10.1021/acs.analchem.8b05116
[51]
Wang X, Zhou Y M, Xu C G, Song H H, Li L, Zhang J L, Guo M X. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 203:415.

doi: 10.1016/j.saa.2018.06.012
[52]
Wu W L, Ma H L, Xi L L, Huang M F, Wang K M, Miao J Y, Zhao B X. Talanta, 2019, 194:308.

doi: 10.1016/j.talanta.2018.10.006
[53]
Yan Y H, Ma H L, Miao J Y, Zhao B X, Lin Z M. Anal. Chimica Acta, 2019, 1064:87.

doi: 10.1016/j.aca.2019.03.004
[54]
Chen W, Li G, Chen C, Sheng J, Yang L. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 228:117724.

doi: 10.1016/j.saa.2019.117724
[55]
Han J L, Liu X J, Xiong H Q, Wang J P, Wang B H, Song X Z, Wang W. Anal. Chem., 2020, 92:5134.

doi: 10.1021/acs.analchem.9b05604
[56]
Pan H, Liu Y J, Liu S Z, Ou Z P, Chen H B, Li H M. Talanta, 2019, 202:329.

doi: 10.1016/j.talanta.2019.05.009
[57]
Ma J L, Yan C X, Li Y J, Duo H X, Li Q, Lu X F, Guo Y. Chem. Eur. J., 2019, 25:7168.

doi: 10.1002/chem.v25.29
[58]
Yang P, Zhao J Z, Wu W H, Yu X R, Liu Y F. J. Org. Chem., 2012, 77:6166.

doi: 10.1021/jo300943t
[59]
Jin Y Z, Wang S, Zhang Y J, Song B. Sensor Actuat. B: Chem., 2016, 225:167.

doi: 10.1016/j.snb.2015.11.039
[60]
Sahana S, Mishra G, Sivakumar S, Bharadwaj P K. Dalton Trans., 2015, 44:20139.

doi: 10.1039/C5DT03719K
[61]
Chen S, Hou P, Wang J X, Song X Z. RSC Adv., 2012, 2:10869.

doi: 10.1039/c2ra21471g
[62]
Wang K, Xi D, Liu C, Chen Y, Gu H, Jiang L, Chen X, Wang F. Chin. Chem. Lett., 2020, 31:2955-2959.

doi: 10.1016/j.cclet.2020.03.064
[63]
Yang Y, Qiu F Z, Wang Y Z, Feng Y, Song X R, Tang X L, Zhang G L, Liu W S. Sensor Actuat. B: Chem., 2018, 260:832.

doi: 10.1016/j.snb.2017.12.204
[64]
He Y H, Xu Y, Shang Y T, Zheng S W, Chen W H, Pang Y. Anal. Bioanal. Chem., 2018, 410:7007.

doi: 10.1007/s00216-018-1332-z
[65]
Nguyen K H, Hao Y Q, Zeng K, Fan S N, Li F, Yuan S K, Ding X J, Xu M T, Liu Y N. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 199:189.

doi: 10.1016/j.saa.2018.03.055
[66]
Ma Q, Wang C, Bai Y, Xu J, Zhang J, Li Z, Guo X. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 223:117334.

doi: 10.1016/j.saa.2019.117334
[67]
Xia Q N, Wang X Y, Liu Y N, Shen Z F, Ge Z G, Huang H, Li X, Wang Y G. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 229:117992.

doi: 10.1016/j.saa.2019.117992
[68]
Lu Y R, Dong B L, Song W H, Kong X Q, Mehmood A H, Lin W Y. J. Photochem. Photobiol. A: Chem., 2019, 384:111980.

doi: 10.1016/j.jphotochem.2019.111980
[69]
Song W H, Dong B L, Lu Y R, Kong X Q, Mehmood A H, Lin W Y. Anal. Methods, 2019, 11:4450.

doi: 10.1039/C9AY01390C
[70]
Zhang P S, Wang H, Hong Y X, Yu M L, Zeng R J, Long Y F, Chen J. Biosens. Bioelectron., 2018, 99:318.

doi: 10.1016/j.bios.2017.08.001
[71]
Zhang P S, Wang H, Zhang D, Zeng X Y, Zeng R J, Xiao L H, Tao H W, Long Y F, Yi P G, Chen J. Sensor Actuat. B: Chem., 2018, 255:2223.

doi: 10.1016/j.snb.2017.09.025
[72]
Zhang H, Zhang Y, Yin C. Sens. Actuators B Chem., 2018,269.
[73]
Xiong H Q, He L, Zhang Y, Wang J P, Song X Z, Yang Z G. Chin. Chem. Lett., 2019, 30:1075.

doi: 10.1016/j.cclet.2019.02.008
[74]
Lan J S, Guo J, Jiang X Y, Chen Y, Hu Z H, Que Y F, Li H X, Gu J Y, Ho R J Y, Zeng R F, Ding Y, Zhang T. Anal. Chimica Acta, 2020, 1094:70.

doi: 10.1016/j.aca.2019.09.076
[75]
Deng Y Z, Feng S M, Xia Q F, Gong S Y, Feng G Q. Talanta, 2020, 215:120901.

doi: 10.1016/j.talanta.2020.120901
[76]
Han X M, Ma Y F, Chen Y Z, Wang X F, Wang Z. Anal. Chem., 2020, 92:2830.

doi: 10.1021/acs.analchem.9b05347
[77]
Wang B B, Zhang F, Wang S K, Yang R J, Chen C H, Zhao W. Chem. Commun., 2020, 56:2598.

doi: 10.1039/C9CC07256J
[78]
Chen H, Sun T, Qiao X G, Tang Q O, Zhao S C, Zhou Z. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2018, 204:196.

doi: 10.1016/j.saa.2018.06.037
[79]
He L, Zhang Y, Xiong H Q, Wang J P, Geng Y N, Wang B H, Wang Y G, Yang Z G, Song X Z. Dye. Pigment., 2019, 166:390.

doi: 10.1016/j.dyepig.2019.03.029
[80]
Lin X, Chen Y, Bao L, Wang S, Liu K, Qin W D, Kong F. Dye. Pigment., 2020, 174:108113.

doi: 10.1016/j.dyepig.2019.108113
[81]
Shao C W, Yuan J W, Liu Y N, Qin Y J, Wang X A, Gu J, Chen G Q, Zhang B, Liu H K, Zhao J, Zhu H L, Qian Y. PNAS, 2020, 117:10155.

doi: 10.1073/pnas.1917946117
[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[7] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[8] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[11] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[12] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[13] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[14] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[15] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.