中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 1035-1043 DOI: 10.7536/PC200659 Previous Articles   Next Articles

• Review •

Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides

Xiaohan Hou1, Shengnan Liu1,2,*(), Qingzhi Gao1,*()   

  1. 1 School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, Tianjin 300072, China
    2 Institute of Molecular Plus, Tianjin University,Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: Shengnan Liu, Qingzhi Gao
  • About author:
    * Corresponding author e-mail: (Shengnan Liu);
    (Qingzhi Gao)
  • Supported by:
    National Key Research and Development Project(2017YFD0201403)
Richhtml ( 34 ) PDF ( 753 ) Cited
Export

EndNote

Ris

BibTeX

Small-molecule fluorescent probes are widely applied in the fields of life science, medicinal chemistry and environmental science, due to their characteristics of high sensitivity and specificity, good stability and economic applicability. In pesticide chemistry, small-molecule fluorescent probes are frequently utilized in the detection of pesticide residues and heavy metal pollutions. With global strategic needs and rapid technological progress in green pesticide development, fluorescent probes are urgently desired as important molecular tools for design, screening and development of environmentally benign agrichemicals. This article aims to review the key updates of small-molecule fluorescent bioprobes in green pesticide R&D by covering their chemical design, molecular targeting, and screening mechanisms against different green pesticide biotargets, and to provide the current status on their research and application as well as future perspectives.

Contents

1 Introduction

2 Ryanodine receptor-targeted small-molecule fluorescent probes

2.1 Anthranilic diamide-based fluorescent probes

2.2 Phthalic diamide-based fluorescent probes

3 Chitin-targeted small molecule fluorescent probes

3.1 Chitin synthase-targeted fluorescent probes

3.2 Chitin related enzyme-targeted fluorescent probes

4 Type Ⅲ secretion system-targeted small-molecule fluorescent probes

5 γ-Aminobutyric acid receptor-targeted small-molecule fluorescent pesticides

6 Acetohydroxyacid synthase-targeted small-molecule fluorescent probes

7 Conclusion and outlook

Fig.1 (a) Design concept of RyR-targeted specific fluorescent probe.(b) Different binding location of ChloF and Ryanodine in RyR
Fig.2 RyR-targeted fluorescent probe based on Flu for in vitro and in vivo imaging studies[28]
Fig.3 RyR-targeted NIR fluorescent probe based on Flu[29]
Fig.4 (a) CHS catalyzed chitin synthesis.(b) Traditional radio-labeled substrate and the fluorescent probe[38]
Fig.5 (a) Traditional chitinase fluorescent substrates.(b) Hexosaminidase selective fluorescent probe[41]
Fig.6 (a) T3SS-targeted specific fluorescence probe.(b) Glu-CyFur reporter system for high-throughput screening[51⇓⇓~54]
Fig.7 (a) Fipronil-based fluorescent phloem-mobile insecticides.(b) Mechanism of fluorescent PAs insecticides[60]
Fig.8 New AHAS inhibitor screening method based on aldehyde-containing fluorescent probe 1[80]
[1]
Huang J S, Guo K X, You L J. South Chin. Agric., 2019, 13(14):165.
(黄佳盛, 郭凯先, 尤李俊. 南方农业, 2019, 13(14): 165.)
[2]
Liu Y R, Gao R F, Yang J W, Han L Y, Qi X F, Mao M M. J. Food Saf. Qual., 2019, 10(24):8562.
(刘艳容, 高瑞峰, 杨佳玮, 韩璐瑶, 祁雪峰, 毛敏明. 食品安全质量检测学报, 2019, 10(24): 8562.)
[3]
An H B, Li Z S. Appl. Sci. Technol., 2003, 30(9):47.
(安红波, 李占双. 应用科技, 2003, 30(9): 47.)
[4]
Shao X S, Du S Q, Li Z, Qian X H. World Pestic., 2020, 42(4):16.
(邵旭升, 杜少卿, 李忠, 钱旭红. 世界农药, 2020, 42(4): 16.)
[5]
Croston G E. Expert. Opin. Drug Discov., 2017, 12(5):427.

doi: 10.1080/17460441.2017.1308351
[6]
Meissner G. J. Gen. Physiol., 2017, 149(12):1065.

doi: 10.1085/jgp.201711878
[7]
Kato K, Kiyonaka S, Sawaguchi Y, Tohnishi M, Masaki T, Yasokawa N, Mizuno Y, Mori E, Inoue K, Hamachi I, Takeshima H, Mori Y S. Biochemistry, 2009, 48(43):10342.

doi: 10.1021/bi900866s
[8]
Sun L N, Qiu G S, Cui L, Ma C S, Yuan H Z. Pestic. Biochem. Physiol., 2015, 123:56.

doi: 10.1016/j.pestbp.2015.03.002
[9]
Guo L, Liang P, Fang K, Chu D. Pestic. Biochem. Physiol., 2017, 142:162.

doi: 10.1016/j.pestbp.2017.07.005
[10]
Tan H J. World Pestic., 2019, 41(5):60.
(谭海军. 世界农药, 2019, 41(5):60.)
[11]
Xing J H, Zhu B C, Yuan J, Yu J P, Dong D Z, Zhou D Y, Hu D S, Chen J. Chin. J. Pestic. Sci., 2013, 15(2):159.
(邢家华, 朱冰春, 袁静, 郁季平, 董德臻, 周冬英, 胡冬松, 陈杰. 农药学学报, 2013, 15(2):159.)
[12]
Tan H J. Fine Spec. Chem., 2020, 28(2):31.
(谭海军. 精细与专用化学品. 2020, 28(2):31.)
[13]
Mueller K H. US9512144, 2016.
[14]
Nakao T, Banba S. Bioorg. Med. Chem., 2016, 24(3):372.

doi: 10.1016/j.bmc.2015.08.008
[15]
Katsuta H, Nomura M, Wakita T, Daido H, Kobayashi Y, Kawahara A, Banba S. J. Pestic. Sci., 2019, 44(2):120.

doi: 10.1584/jpestics.D18-088
[16]
Bo Y L. Pestic. Market News, 2018, 20:27.
(柏亚罗. 农药市场信息, 2018, 20:27.).
[17]
Sun Y, Xu L, Chen Q, Qin W J, Huang S J, Jiang Y, Qin H G. Pest. Manag. Sci, 2018, 74(6):1416.

doi: 10.1002/ps.2018.74.issue-6
[18]
Selby T P, Lahm G P, Stevenson T M. Pest. Manag. Sci., 2017, 73(4):658.

doi: 10.1002/ps.2017.73.issue-4
[19]
Li B, Yang H B, Wang J F, Song Y Q. Mod. Agrochem., 2014,(3):17.
(李斌, 杨辉斌, 王军锋, 宋玉泉. 现代农药, 2014,(3):17.)
[20]
He X L. World Pestic., 2016, 38(3):60.
(何秀玲. 世界农药, 2016, 38(3):60.)
[21]
Sakuma Haruhiko. CN 101528040, 2009.
[22]
Wang Y, Guo L, Qi S Z, Zhang H, Liu K C, Liu R Q, Liang P, Casida J, Liu S Z. Molecules, 2014, 19(4):4105.

doi: 10.3390/molecules19044105 pmid: 24699151
[23]
Chen J, Xue L, Wei R S, Liu S Z, Yin C C. Biochem. Biophys. Res. Commun., 2019, 508(2):633.

doi: 10.1016/j.bbrc.2018.11.180
[24]
Liu T F, Yang D F, Deng J H, Dong M H. Chin. Agric. Sci. Bull., 2015, 31(3):221.
(刘腾飞, 杨代凤, 邓金花, 董明辉. 中国农学通报, 2015, 31(3):221.)
[25]
Qi H L, Cui L, Wang Q Q, Liu F, Rui C H. Plant Prot., 2017, 43(1):112.
(齐浩亮, 崔丽, 王芹芹, 刘峰, 芮昌辉. 植物保护, 2017, 43(1):112.)
[26]
Isaacs A K, Qi S Z, Sarpong R, Casida J E. Chem. Res. Toxicol., 2012, 25(8):1571.

doi: 10.1021/tx300326m pmid: 22856329
[27]
Qi S Z, Lümmen P, Nauen R, Casida J E. J. Agric. Food Chem., 2014, 62(18):4077.

doi: 10.1021/jf501236h
[28]
Li Z Z, Jiang H, Liu S N, Li Y X, Yuchi Z G, Gao Q Z. Anal. Chimica Acta, 2020, 1108:108.

doi: 10.1016/j.aca.2020.02.047
[29]
Liao M, Li Q B, Yang Z K, Feng T, Xu Z Y, Liu Q, Liu S Z. Ann. N.Y. Acad. Sci., 2020, 1475(1):43.

doi: 10.1111/nyas.14362 pmid: 32483859
[30]
Chowdhury R, Candela-Lena J I, Chan M C, Greenald D J, Yeoh K K, Tian Y M, McDonough M A, Tumber A, Rose N R, Conejo-Garcia A, Demetriades M, Mathavan S, Kawamura A, Lee M K, van Eeden F, Pugh C W, Ratcliffe P J, Schofield C J. ACS Chem. Biol., 2013, 8(7):1488.

doi: 10.1021/cb400088q
[31]
Vachal P, Miao S W, Pierce J M, Guiadeen D, Colandrea V J, Wyvratt M J, Salowe S P, Sonatore L M, Milligan J A, Hajdu R, Gollapudi A, Keohane C A, Lingham R B, Mandala S M, DeMartino J A, Tong X C, Wolff M, Steinhuebel D, Kieczykowski G R, Fleitz F J, Chapman K, Athanasopoulos J, Adam G, Akyuz C D, Jena D K, Lusen J W, Meng J C, Stein B D, Xia L, Sherer E C, Hale J J. J. Med. Chem., 2012, 55(7):2945.

doi: 10.1021/jm201542d pmid: 22364528
[32]
Li T C, Chen J, Fan X B, Chen W W, Zhang W Q. Pest. Manag. Sci., 2017, 73(7):1529.

doi: 10.1002/ps.2017.73.issue-7
[33]
Zimoch L, Hogenkamp D G, Kramer K J, Muthukrishnan S, Merzendorfer H. Insect Biochem. Mol. Biol., 2005, 35(6):515.

doi: 10.1016/j.ibmb.2005.01.008
[34]
Batran R Z, Khedr M A, Abdel Latif N A, Abd El Aty A A, Shehata A N. J. Mol. Struct., 2019, 1180:260.

doi: 10.1016/j.molstruc.2018.11.099
[35]
Li B, Wang K Y, Zhang R, Li B H, Shen Y L, Ji Q G. Eur. J. Med. Chem., 2019, 182:111669.

doi: 10.1016/j.ejmech.2019.111669
[36]
Zhang P, Zhao Y H, Wang Q H, Mu W, Liu F. Pestic. Biochem. Physiol., 2017, 136:80.

doi: S0048-3575(16)30076-1 pmid: 28187835
[37]
Cohen E. Annu. Rev. Entomol., 1987, 32(1):71.

doi: 10.1146/annurev.en.32.010187.000443
[38]
Bahmed K, Quilès F, Wathier M, Bonaly R, Benallaoua S, Pucci B, Coulon J. Process. Biochem., 2005, 40(7):2523.

doi: 10.1016/j.procbio.2004.10.003
[39]
Chen Q, Zhang J W, Chen L L, Yang J, Yang X L, Ling Y, Yang Q. Chin. Chem. Lett., 2017, 28(6):1232.

doi: 10.1016/j.cclet.2017.03.030
[40]
Goedken E R, O’Brien R F, Xiang T, Banach D L, Marchie S C, Barlow E H, Hubbard S, Mankovich J A, Jiang J J, Richardson P L, Cuff C A, Cherniack A D. Protein Expr. Purif., 2011, 75(1):55.

doi: 10.1016/j.pep.2010.08.013
[41]
Dong L L, Shen S Q, Lu H Z, Jin S H, Zhang J J. ACS Sens., 2019, 4(5):1222.

doi: 10.1021/acssensors.8b01617
[42]
Li T H, Zhang D D, Oo T N, San M M, Mon A M, Hein P P, Wang Y H, Lu C H, Yang X F. Evid. Based Complementary Altern. Med., 2018,2018: 1.
[43]
Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O E, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain J M, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. New Microbes New Infect., 2015, 6:22.

doi: 10.1016/j.nmni.2015.02.007
[44]
Schesser Bartra S, Lorica C, Qian L F, Gong X, Bahnan W, Barreras H Jr, Hernandez R, Li Z W, Plano G V, Schesser K. Front. Cell. Infect. Microbiol., 2019, 9:23.

doi: 10.3389/fcimb.2019.00023
[45]
Fan S S, Tian F, Li J Y, Hutchins W, Chen H M, Yang F H, Yuan X C, Cui Z N, Yang C H, He C Y. Mol. Plant Pathol., 2017, 18(4):555.

doi: 10.1111/mpp.2017.18.issue-4
[46]
Xiang X W, Tao H, Jiang S, Zhang L H, Cui Z N. Pestic. Biochem. Physiol., 2018, 149:89.

doi: 10.1016/j.pestbp.2018.06.011
[47]
Tao H, Tian H, Jiang S, Xiang X W, Lin Y N, Ahmed W, Tang R Y, Cui Z N. Pestic. Biochem. Physiol., 2019, 160:87.

doi: 10.1016/j.pestbp.2019.07.005
[48]
Pendergrass H A, May A E. Antibiotics, 2019, 8(4):162.

doi: 10.3390/antibiotics8040162
[49]
Lan N H, Su D S, Zhou L, Qin X, Huang P F, Yang M, Jiang B L. Acta. Phytopathologica. Sinica., 2019, 49(2):262.
(蓝逆寒, 苏德山, 周乐, 覃霞, 黄佩芳, 杨梅, 姜伯乐. 植物病理学报, 2019, 49(2):262.)
[50]
Allombert J, Vianney A, Charpentier X. Methods in Molecular Biology. New York: Springer New York, 2017.489.
[51]
Yount J S, Tsou L K, Dossa P D, Kullas A L, van der Velden A W M, Hang H C. J. Am. Chem. Soc., 2010, 132(24):8244.

doi: 10.1021/ja102257v
[52]
Tsou L K, Lara-Tejero M, RoseFigura J, Zhang Z J, Wang Y C, Yount J S, Lefebre M, Dossa P D, Kato J, Guan F L, Lam W, Cheng Y C, Galán J E, Hang H C. J. Am. Chem. Soc., 2016, 138(7):2209.

doi: 10.1021/jacs.5b11575 pmid: 26847396
[53]
Tsou L K, Yount J S, Hang H C. Bioorg. Med. Chem., 2017, 25(11):2883.

doi: 10.1016/j.bmc.2017.03.023
[54]
Büttner D, Bonas U. Curr. Opin. Microbiol., 2006, 9(2):193.

doi: 10.1016/j.mib.2006.02.006
[55]
Wei Q, Wu S F, Gao C F. Agrochemicals, 2014, 53(12):859.
(魏琪, 吴顺凡, 高聪芬. 农药, 2014, 53(12):859.)
[56]
Gibbons D, Morrissey C, Mineau P. Environ. Sci. Pollut. Res., 2015, 22(1):103.

doi: 10.1007/s11356-014-3180-5
[57]
Mahler B J, van Metre P C, Wilson J T, Musgrove M, Zaugg S D, Burkhardt M R. Environ. Sci. Technol., 2009, 43(15):5665.

doi: 10.1021/es901292a
[58]
Dedryver C A, Ralec A L, Fabreb F. C. R. Biol., 2010, 333(6):539.

doi: 10.1016/j.crvi.2010.03.009
[59]
Wang F, Meng X H, Wang H. Agric. Sci., 2014, 4(5):99.
(王峰, 孟祥鹤, 王菡. 农业科学, 2014, 4(5):99.)
[60]
Wu Z D, Du Y T, Zhou Q, Chen L Q. Pestic. Biochem. Physiol., 2020, 163:51.

doi: 10.1016/j.pestbp.2019.10.003
[61]
Garcia M D, Wang J G, Lonhienne T, Guddat L W. FEBS J., 2017, 284(13):2037.

doi: 10.1111/febs.2017.284.issue-13
[62]
Chen W, Wei W, Zhou S, Li Y H, Zhang X, Tong J, Li Y X, Li Z M. Chem. J. Chinese Univ., 2015, 36(4):672.

doi: 10.1002/cjoc.v36.7
[63]
Wang J G. Chin. J. Pestic. Sci., 2014, 16(4):367.
[64]
Eoyang L, Silverman P M. J. Bacteriol., 1984, 157(1):184.

pmid: 6360995
[65]
Hattori J, Rutledge R, Labbé H, Brown D, Sunohara G, Miki B. Mol. Gen. Genet. MGG, 1992, 232(2):167.

doi: 10.1007/BF00279993
[66]
Chang S I, Kang M K, Choi J D, Namgoong S K. Biochem. Biophys. Res. Commun., 1997, 234(3):549.

doi: 10.1006/bbrc.1997.6678
[67]
Arabet D, Tempel S, Fons M, Denis Y, Jourlin-Castelli C, Armitano J, Redelberger D, Iobbi-Nivol C, Boulahrouf A, Méjean V. Environ. Sci. Pollut. Res., 2014, 21(8):5619.

doi: 10.1007/s11356-014-2512-9
[68]
Mao D L, Michelmore S, Paull J, Preston C, Sutton T, Oldach K, Yang S Y, McMurray L. Pest. Manag. Sci., 2019, 75(10):2698.

doi: 10.1002/ps.v75.10
[69]
Liu Y C, Qu R Y, Chen Q, Yang J F, Niu C W, Zhen X, Yang G F. J. Agric. Food Chem., 2016, 64(24):4845.

doi: 10.1021/acs.jafc.6b00720
[70]
Wang W, Wang Y C, Li Z, Wang H Y, Yu Z Y, Lu L, Ye Q F. Sci. Total. Environ., 2014, 472:582.

doi: 10.1016/j.scitotenv.2013.11.068
[71]
Chen G F, Qiao Y X, Zhang X B, Liu F, Liao H, Zhang R Y, Dong J N, Tao B. Bull. Environ. Contam. Toxicol., 2019, 102(6):854.

doi: 10.1007/s00128-019-02612-2
[72]
Zhong M M, Wang T L, Hu J Y. Environ. Monit. Assess., 2015, 187(6):1.

doi: 10.1007/s10661-014-4167-x
[73]
Garcia M D, Nouwens A, Lonhienne T G, Guddata L W. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(7):E1091.

doi: 10.1073/pnas.1616142114
[74]
Duggleby R G, Pang S S, Yu H Q, Guddat L W. Eur. J. Biochem., 2003, 270(13):2895.

pmid: 12823560
[75]
Riar D S, Tehranchian P, Norsworthy J K, Nandula V, McElroy S, Srivastava V, Chen S, Bond J A, Scott R C. Weed Sci., 2015, 63(4):748.

doi: 10.1614/WS-D-15-00014.1
[76]
Yu Q, Powles S B. Pest. Manag. Sci., 2014, 70(9):1340.

doi: 10.1002/ps.3710
[77]
Kreiner J M, Stinchcombe J R, Wright S I. Annu. Rev. Plant Biol., 2018, 69(1):611.

doi: 10.1146/annurev-arplant-042817-040038
[78]
Singh B K, Stidham M A, Shaner D L. Anal. Biochem., 1988, 171(1):173.

pmid: 3407914
[79]
Schloss J V, van Dyk D E, Vasta J F, Kutny R M. Biochemistry, 1985, 24(18):4952.

pmid: 3907697
[80]
Xie Y H, Zhang C Y, Wang Z H, Wei C, Liao N J, Wen X, Niu C W, Yi L, Wang Z J, Xi Z. Anal. Chem., 2019, 91(21):13582.

doi: 10.1021/acs.analchem.9b02739
[1] Li Ying,Cui Zining,Hu Jun,Ling Yun|Yang Xinling**. Studies on Chitin Synthase Inhibitors [J]. Progress in Chemistry, 2007, 19(04): 535-543.
[2] Jin Sun,Yongjun Wang,Zhonggui He**. Biopartitioning Chromatography: High Throughput Screening in Drug Membrane Permeability and Activity [J]. Progress in Chemistry, 2006, 18(0708): 1002-1008.
[3] Yao Nianhuan,He Wenyi,Liu Gang*,Kit S. Lam. Applications of Nuclear Magnetic Resonance Spectroscopy (NMR) to Combinatorial Chemistry [J]. Progress in Chemistry, 2004, 16(05): 696-.
[4] Wang Hua**, Liu Zhongmin. Progress in Combinatorial Heterogeneous Catalysis [J]. Progress in Chemistry, 2003, 15(04): 256-.