中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (0203): 192-208 DOI: 10.7536/PC120849 Previous Articles   Next Articles

• Review •

Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose

Zhang Jiaren, Deng Tianyin, Liu Haichao*   

  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 1402 ) Cited
Export

EndNote

Ris

BibTeX

Dual pressures currently arising from energy shortage and environmental degradation worldwide make it critically important to utilize renewable biomass resources for energy. But due to the requirement for the safety of food and feed, triglyceride feedstocks (currently derived mainly from vegetable oils and animal fats) and lignocellulose among the various kinds of naturally-occurring biomass are practical sources for production of liquid biofuels instead of fossil fuels. In this respect, we review the recent progress in the transformation of triglyceride feedstocks and lignocellulose into liquid biofuels by different catalytic routes. These routes include thermal cracking, hydrogenation and transesterification for oils and fats, and gasification-Fischer-Tropsch synthesis, liquefaction-upgrading and selective synthesis via platform chemicals for lignocellulose. The catalysts and processes involved in these catalytic routes are intensively discussed, and their existing problems and possible solutions are addressed, which may provide insights helpful for further studies on the more efficient utilization of biomass for energy. Contents
1 Introduction
2 Conversion of oils and fats
2.1 Thermal cracking
2.2 Catalytic hydrogenation
2.3 Transesterification
3 Conversion of lignocellulose
3.1 Gasification-Fischer-Tropsch synthesis
3.2 Liquefaction-upgrading
3.3 Selective synthesis via platform chemicals
4 Outlook

CLC Number: 

[1] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9): 1493-1513
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044-4098
[3] 沈宜泓(Shen Y H), 王帅(Wang S), 罗琛(Luo C), 刘海超(Liu H C). 化学进展(Progress in Chemistry), 2007, 19(2): 431-436
[4] 袁振宏(Yuan Z H), 吴创之(Wu C Z), 马隆龙(Ma L L). 生物质能利用原理与技术(Principle and Technology of Biomass Energy Utilization). 北京: 化学工业出版社(Beijing: Chemical Industrial Press), 2005
[5] Mata T M, Martins A A, Caetano N S. Renew. Sust. Energ. Rev., 2010, 14(1): 217-232
[6] Quintero J, Montoya M, Sánchez O, Giraldo O, Cardona C. Energy, 2008, 33(3): 385-399
[7] Junming X, Jianchun J, Yanju L, Jie C. Bioresource Technol., 2009, 100(20): 4867-4870
[8] Knothe G. Prog. Energ. Combust., 2010, 36(3): 364-373
[9] Maher K, Bressler D. Bioresource Technol., 2007, 98(12): 2351-2368
[10] Twaiq F A A, Mohamad A, Bhatia S. Fuel Process Technol., 2004, 85(11): 1283-1300
[11] Heo H S, Kim S G, Jeong K E, Jeon J K, Park S H, Kim J M, Kim S S, Park Y K. Bioresource Technol., 2011, 102(4): 3952-3957
[12] Ngo T A, Kim J, Kim S K, Kim S S. Energy, 2010, 35(6): 2723-2728
[13] Twaiq F A, Mohamed A R, Bhatia S. Micropor. Mesopor. Mater., 2003, 64: 95-107
[14] Ooi Y S, Zakaria R, Mohamed A R, Bhatia S. Appl. Catal. A Gen., 2004, 274(1): 15-23
[15] Twaiq F A, Zabidi N A M, Mohamed A R, Bhatia S. Fuel Process Technol., 2003, 84(1): 105-120
[16] Ramya G, Sudhakar R, Joice J A I, Ramakrishnan R, Sivakumar T. Appl. Catal. A Gen., 2012, 433/434: 170-178
[17] Wiggers V, Meier H, Wisniewski A, Chivanga B A, Wolf M M. Bioresource Technol., 2009, 100(24): 6570-6577
[18] Da Rocha F G, Brodzki D, Djega-Mariadassou G. Fuel, 1993, 72(4): 543-549
[19] Jakkula J, Niemi V, Nikkonen J, Purola V M, Myllyoja J, Aalto P, Lehtonen J, Alopaeus V. US7232935, 2007
[20] Peng B, Yao Y, Zhao C, Lercher J A. Angew. Chem. Int. Ed., 2012, 124(9): 2114-2117
[21] Barron C A, Melo-Banda J, Dominguez E J, Hernandez M E, Silva R R, Reyes T A, Meraz M M. Catal. Today, 2011, 166(1): 102-110
[22] Herskowitz M, Landau M, Reizner I, Kaliya M. WO100584, 2006
[23] Guzman A, Torres J E, Prada L P, Nunez M L. Catal. Today, 2010, 156(1): 38-43
[24] Simacek P, Kubicka D, Sebor G, Pospísil M. Fuel, 2009, 88(3): 456-460
[25] Huber G W, O’Connor P, Corma A. Appl. Catal. A Gen., 2007, 329: 120-129
[26] Laurent E, Delmon B. Appl. Catal. A Gen., 1994, 109(1): 97-115
[27] Senol O I, Viljava T R, Krause A. Appl. Catal. A Gen., 2007, 326(2): 236-244
[28] Simacek P, Kubicka D. Fuel, 2010, 89(7): 1508-1513
[29] 赵阳(Zhao Y), 吴佳(Wu J), 王宣(Wang X), 张晓昕(Zhang X X), 孟祥堃(Meng X K). 化工进展(Chemical Industry and Engineering Progress), 2007, 26(10): 1391-1394
[30] Bacovsky D, Korbitz W, Mittelbach M, Worgetter M. IEA Task 39 Report T39-B6, 2007
[31] Meher L, Vidya S D, Naik S. Renew. Sust. Energ. Rev., 2006, 10(3): 248-268
[32] Atadashi I, Aroua M, Aziz A A. Renew. Energ., 2011, 36(2): 437-443
[33] Di Serio M, Tesser R, Pengmei L, Santacesaria E. Energy. Fuel, 2007, 22(1): 207-217
[34] Ilgen O, Akin A N. Turk. J. Chem., 2009. 33(2): 281-287
[35] Arzamendi G, Campo I, Arguinarena E, Sanchez M, Montes M, Gandia L. Chem. Eng. J., 2007, 134: 123-130
[36] Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S. Renew. Energ., 2009, 34(4): 1145-1150
[37] Shibasaki-Kitakawa N, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T. Bioresource Technol., 2007, 98(2): 416-421
[38] Co C E T, Tan M C, Diamante J A R, Yan L R C, Tan R R, Razon L F. Catal. Today, 2011, 174(1): 54-58
[39] Cantrell D G, Gillie L J, Lee A F, Wilson K. Appl. Catal. A Gen., 2005, 287(2): 183-190
[40] Liu H, Min E. Green Chem., 2006, 8(7): 657-662
[41] 王帅(Wang S), 李洋(Li Y), 刘海超(Liu H C). 化学学报(Acta. Chim. Sin. ), 2012, doi: 10.6023/A12050249
[42] Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E. Ind. Eng. Chem. Res., 2006, 45(9): 3009-3014
[43] Kouzu M, Hidaka J S. Fuel, 2012, 93: 1-12
[44] Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. Fuel, 2008, 87(12): 2798-2806
[45] Kouzu M, Hidaka J S. Fuel, 2012, doi: 10.1016/j. fuel. 2012.06.019
[46] Liu C, Lv P, Yuan Z, Yan F, Luo W. Renew. Energ., 2010, 35(7): 1531-1536
[47] Stern R, Hillion G, Rouxel J J, Leporq S. US5908946, 1999
[48] Bournay L, Casanave D, Delfort B, Hillion G, Chodorge J. Catal. Today, 2005, 106: 190-192
[49] Lopez D E, Goodwin J G, Bruce D A, Lotero E. Appl. Catal. A Gen., 2005, 295(2): 97-105
[50] Lopez D E, Goodwin J G Jr, Bruce D A. J. Catal., 2007, 245(2): 381-391
[51] Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J. Catal. Today, 2006, 118: 166-171
[52] Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, Hara M. Nature, 2005, 438: 178-178
[53] Mo X, Lopez D E, Suwannakarn K, Liu Y, Lotero E, Goodwin J G, Lu C. J. Catal., 2008, 254(2): 332-338
[54] Alsalme A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. A Gen., 2008, 349: 170-176
[55] Chai F, Cao F, Zhai F, Chen Y, Wang X, Su Z. Adv. Synth. Catal., 2007, 349(7): 1057-1065
[56] Sreeprasanth P S, Srivastava R, Srinivas D, Ratnasamy P. Appl. Catal. A Gen., 2006, 314(2): 148-159
[57] Srinivas D, Srivastava R, Ratnasamy P. US7482480, 2009
[58] Wang Y, Ou S, Liu P, Zhang Z. Energ. Convers. Manag., 2007, 48(1): 184-188
[59] Leung D Y C, Wu X, Leung M. Appl. Energ., 2010, 87(4): 1083-1095
[60] Boocock D. US0083514A1, 2003
[61] Hayyan A, Alam M Z, Mirghani M E S, Kabbashi N A, Hakimi N I N M, Siran Y M, Tahiruddin S. Fuel Process Technol., 2011, 92(5): 920-924
[62] Gao Y. Am. Chem. Soc. Div. Fuel Chem., 2007, 52(2): 304
[63] Tang Z, Du Z, Min E, Gao L, Jiang T, Han B. Fluid Phase Equilibr., 2006, 239(1): 8-11
[64] Hegel P, Andreatta A, Pereda S, Bottini S, Brignole E A. Fluid. Phase. Equilibr., 2008, 266(1): 31-37
[65] Saka S, Kusdiana D. Fuel, 2001, 80(2): 225-231
[66] 王海京(Wang H J), 杜泽学(Du Z X), 闵恩泽(Min E Z), 江雨生(Jiang Y S), 李蓓(Li B), 高国强(Gao G Q). CN101070480A, 2007
[67] Dry M E. J. Chem. Technol. Biot., 2002, 77(1): 43-50
[68] Bridgwater A V. Biomass Bioenerg., 2012, 38: 68-94
[69] Zhang Q, Chang J, Wang T J, Xu Y. Energ. Convers. Manger., 2007, 48(1): 87-92
[70] Chheda J N, Huber G W, Dumesic J A. Angew. Chem. Int. Ed., 2007, 46(38): 7164-7183
[71] Leibold H, Hornung A, Seifert H. Powder Technol., 2008, 180(1/2): 265-270
[72] Sims R E H, Mabee W, Saddler J N, Taylor M. Bioresource Technol., 2010, 101(6): 1570-1580
[73] Huber G W, Corma A. Angew. Chem. Int. Ed., 2007, 46(38): 7184-7201
[74] Stevens D, Worgetter M, Saddler J. IEA Bioenergy Task 39, 2004
[75] 吴春来(Wu C L). 煤化工(Coal Chemical Industry), 2003, 2(4): 3-6
[76] McKendry P. Bioresource Technol., 2002, 83(1): 55-63
[77] Skoulou V, Zabaniotou A, Stavropoulos G, Sakelaropoulos G. Int. J. Hydrogen. Energy, 2008, 33(4): 1185-1194
[78] 解庆龙(Jie Q L), 孔丝纺(Kong S F), 刘阳生(Liu Y S),曾辉(Zeng H). 现代化工(Modern Chemical Industry), 2011, 31(7): 16-20
[79] Guo Y, Wang S, Xu D, Gong Y, Ma H, Tang X. Renew. Sust. Energ. Rev., 2010, 14(1): 334-343
[80] Matsumura Y, Minowa T, Potic B, Kersten S R A, Prins W, van Swaaij W P M, van de Beld B, Elliott D C, Neuenschwander G G, Kruse A. Biomass Bioenergy, 2005, 29(4): 269-292
[81] Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S. Energ. Convers. Manage., 2005, 46(4): 615-631
[82] Peterson A A, Vogel F, Lachance R P, Fröling M, Antal M J Jr, Tester J W. Energ. Environ. Sci., 2008, 1(1): 32-65
[83] Mohan D, Pittman C U Jr, Steele P H. Energ. Fuel., 2006, 20(3): 848-889
[84] Lede J, Blanchard F, Boutin O. Fuel, 2002, 81(10): 1269-1279
[85] Salge J, Dreyer B, Dauenhauer P, Schmidt L. Science, 2006, 314(5800): 801-804
[86] Dauenhauer P J, Dreyer B J, Degenstein N J, Schmidt L D. Angew. Chem. Int. Ed., 2007, 46(31): 5864-5867
[87] Colby J L, Dauenhauer P J, Schmidt L D. Green Chem., 2008, 10(7): 773-783
[88] Bartholomew C H. Appl. Catal. A Gen., 2001, 212(1): 17-60
[89] Kulkarni P, Subia R, Cui Z, Gillette G, Fletcher K. Coal-Energy, Environment and Sustainable Development. 2007
[90] Dietenberger M A, Anderson M. Ind. Eng. Chem. Res., 2007, 46(26): 8863-8874
[91] Eatwell-Hall R, Sharifi V, Swithenbank J. Int. J. Hydrogen Energ., 2010, 35(24): 13168-13178
[92] Richardson Y, Blin J, Julbe A. Prog. Energ. Combust., 2012, doi: 10.1016/j.pecs.2011.12.001
[93] Adinberg R, Epstein M, Karni J. J. Sol. Energ-T. Asme., 2004, 126(3): 850-857
[94] Chen J, Lu Y, Guo L, Zhang X, Xiao P. Int. J. Hydrogen Energ., 2010, 35(13): 7134-7141
[95] Lu Y, Zhao L, Guo L. Int. J. Hydrogen Energ., 2011, 36(22): 14349-14359
[96] Damartzis T, Zabaniotou A. Renew. Sust. Energ. Rev., 2011, 15(1): 366-378
[97] Sharma S D, Dolan M, Park D, Morpeth L, Ilyushechkin A, McLennan K, Harris D, Thambimuthu K. Powder Technol., 2008, 180(1): 115-121
[98] Xu C C, Donald J, Byambajav E, Ohtsuka Y. Fuel, 2010, 89(8): 1784-1795
[99] Devi L, Ptasinski K J, Janssen F J J G. Biomass Bioenerg., 2003, 24(2): 125-140
[100] Li C, Suzuki K. Renew. Sust. Energ. Rev., 2009, 13(3): 594-604
[101] El-Rub Z A, Bramer E, Brem G. Ind. Eng. Chem. Res., 2004, 43(22): 6911-6919
[102] Yu Q Z, Brage C, Nordgreen T, Sjostrom K. Fuel, 2009, 88(10): 1922-1926
[103] Hu G, Xu S, Li S, Xiao C, Liu S. Fuel Process Technol., 2006, 87(5): 375-382
[104] Delgado J, Aznar M P, Corella J. Ind. Eng. Chem. Res., 1997, 36(5): 1535-1543
[105] Kobayashi J, Kawamoto K, Fukushima R, Tanaka S. Chemosphere, 2011, 83: 1273-1278
[106] Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M. Int. J. Hydrogen Energ., 2008, 33(17): 4520-4526
[107] Muangrat R, Onwudili J A, Williams P T. Appl. Catal. B-Environ., 2010, 100(3/4): 440-449
[108] Sutton D, Kelleher B, Ross J R H. Fuel Process Technol., 2001, 73(3): 155-173
[109] Guo J, Lou H, Zhao H, Chai D, Zheng X. Appl. Catal. A Gen., 2004, 273: 75-82
[110] Qiu M, Li Y, Wang T, Zhang Q, Wang C, Zhang X, Wu C, Ma L, Li K. Appl. Energ., 2011, 90: 3-10
[111] Tomishige K, Asadullah M, Kunimori K. Catal. Today, 2004, 89(4): 389-403
[112] Ronkkonen H, Simell P, Niemela M, Krause O. Fuel Process Technol., 2011, 92(10): 1881-1889
[113] Ronkkonen H, Simell P, Reinikainen M, Niemela M, Krause O. Fuel Process Technol., 2011, 92(8): 1457-1465
[114] Hao X, Guo L, Zhang X, Guan Y. Chem. Eng. J., 2005, 110(1): 57-65
[115] Elliott D, Beckman D, Bridgwater A, Diebold J, Gevert S, Solantausta Y. Energy Fuel, 1991, 5(3): 399-410
[116] Czernik S, Bridgwater A. Energy Fuel, 2004, 18(2): 590-598
[117] Bridgwater A, Peacocke G. Renew. Sust. Energ. Rev., 2000, 4(1): 1-73
[118] Chen N Y, Degnan T, Koenig L R. Chemtech., 1986, 16(506): 11
[119] Carlson T R, Vispute T P, Huber G W. ChemSusChem, 2008, 1(5): 397-400
[120] Carlson T R, Tompsett G A, Conner W C, Huber G W. Top. Catal., 2009, 52(3): 241-252
[121] Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. J. Catal., 2011, 279: 257-268
[122] Akhtar J, Amin N A S. Renew. Sust. Energy Rev., 2011, 15(3): 1615-1624
[123] Xu C, Lad N. Energy Fuel, 2007, 22(1): 635-642
[124] Kleinert M, Barth T. Energy Fuel, 2008, 22(2): 1371-1379
[125] Bridgwater A V. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2011. 157-199
[126] Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater A, Grimm H, Soldaini I, Webster A, Baglioni P. Biomass Bioenergy, 2003, 25(1): 85-99
[127] Zhang Q, Chang J, Wang T J, Xu Y. Energy Fuel, 2006, 20(6): 2717-2720
[128] Deng L, Fu Y, Guo Q X. Energy Fuel, 2008, 23(1): 564-568
[129] Furimsky E. Appl. Catal. A Gen., 2000, 199(2): 147-190
[130] Laurent E, Delmon B. Appl. Catal. A Gen., 1994, 109(1): 77-96
[131] Mortensen P, Grunwaldt J D, Jensen P, Knudsen K, Jensen A. Appl. Catal. A Gen., 2011, 407: 1-19
[132] Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Angew. Chem. Int. Ed., 2009, 121(22): 4047-4050
[133] Wang Y, He T, Liu K, Wu J, Fang Y. Bioresource Technol., 2012, 108: 280-284
[134] Wildschut J, Mahfud F H, Venderbosch R H, Heeres H J. Ind. Eng. Chem. Res., 2009, 48(23): 10324-10334
[135] Venderbosch R, Ardiyanti A, Wildschut J, Oasmaa A, Heeres H. J. Chem. Technol. Biot., 2010, 85(5): 674-686
[136] Ardiyanti A, Khromova S, Venderbosch R, Yakovlev V, Heeres H. Appl. Catal. B Environ., 2012, 117: 105-117
[137] Elliott D C, Hart T R, Neuenschwander G G, Rotness L J, Olarte M V, Zacher A H, Solantausta Y. Energy Fuel, 2012, 26: 3891-3896
[138] Bridgwater A V. Catal. Today, 1996, 29(1): 285-295
[139] Davda R, Shabaker J, Huber G, Cortright R, Dumesic J. Appl. Catal. B Environ., 2005, 56(1): 171-186
[140] Huber G W, Cortright R D, Dumesic J A. Angew. Chem. Int. Ed., 2004, 43(12): 1549-1551
[141] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gärtner C A, Dumesic J A. Science, 2008, 322(5900): 417-421
[142] Kuster B. Starch-Stärke, 1990, 42(8): 314-321
[143] Rackemann D W, Doherty W O S. Bioprod. Bioref., 2011, 5(2): 198-214
[144] Rosatella A A, Simeonov S P, Frade R F M, Afonso C A M. Green Chem., 2011, 13(4): 754-793
[145] Mamman A S, Lee J M, Kim Y C, Hwang I T, Park N J, Hwang Y K, Chang J S, Hwang J S. Bioprod. Bioref., 2008, 2(5): 438-454
[146] Li C, Zhang Z, Zhao Z K. Tetrahedron Lett., 2009, 50(38): 5403-5405
[147] Jadhav H, Pedersen C M, Solling T, Bols M. ChemSusChem, 2011, 4(8): 1049-1051
[148] Perez L C, Yaylayan V A. J. Agr. Food Chem., 2008, 56(15): 6717-6723
[149] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48(35): 6529-6532
[150] Hu S, Zhang Z, Song J, Zhou Y, Han B. Green Chem., 2009, 11(11): 1746-1749
[151] Hu L, Sun Y, Lin L, Liu S. J. Taiwan. Inst. Chem. E., 2012, doi: 10.1016/j. jtice. 2012.04.001
[152] Yong G, Zhang Y, Ying J Y. Angew. Chem. Int. Ed., 2008, 120(48): 9485-9488
[153] Moreau C, Finiels A, Vanoye L. J. Mol. Catal. A-Chem., 2006, 253: 165-169
[154] Li C, Zhao Z K, Wang A, Zheng M, Zhang T. Carbohyd. Res., 2010, 345(13): 1846-1850
[155] Roman-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312(5782): 1933-1937
[156] Shimizu K, Uozumi R, Satsuma A. Catal. Comm., 2009, 10(14): 1849-1853
[157] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979-1985
[158] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109(12): 6712-6728
[159] Wang P, Yu H, Zhan S, Wang S. Bioresource Technol., 2010, 102: 4179-4183
[160] Chalid M, Broekhuis A, Heeres H. J. Mol. Catal. A-Chem., 2011, 341: 14-21
[161] Yan Z, Lin L, Liu S. Energy Fuel, 2009, 23(8): 3853-3858
[162] Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Green Chem., 2009, 11(8): 1247-1255
[163] Mehdi H, Fabos V, Tuba R, Bodor A, Mika L T, Horvath I T. Top. Catal., 2008, 48(1): 49-54
[164] Braden D J, Henao C A, Heltzel J, Maravelias C C, Dumesic J A. Green Chem., 2011, 13(7): 1755-1765
[165] Tong X, Ma Y, Li Y. Appl. Catal. A Gen., 2010, 385(1): 1-13
[166] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147): 982-985
[167] Agirrezabal-Telleria I, Requies J, Güemez M B, Arias P L. Appl. Catal. B Environ., 2012, 115: 169-178
[168] Zheng H Y, Zhu Y L, Teng B T, Bai Z Q, Zhang C H, Xiang H W, Li Y W. J. Mol. Catal. A-Chem., 2006, 246(1): 18-23
[169] Elliott D C, Frye J G. US5883266, 1999
[170] Chheda J N, Dumesic J A. Catal. Today, 2007, 123(1): 59-70
[171] Huber G W, Chheda J N, Barrett C J, Dumesic J A. Science, 2005, 308(5727): 1446-1450
[172] Serrano-Ruiz J C, Wang D, Dumesic J A. Green Chem., 2010, 12(4): 574-577
[173] Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Green Chem., 2010, 12(6): 992-999
[174] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327(5969): 1110-1114
[175] Serrano-Ruiz J C, Pineda A, Balu A M, Luque R, Campelo J M, Romero A A, Ramos-Fernandez J M. Catal. Today, 2012, doi: 10.1016/j. cattod. 2012.01.009
[176] Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Appl. Catal. B Environ., 2010, 100(1): 184-189
[177] Serrano-Ruiz J C, Dumesic J A. Green Chem., 2009, 11(8): 1101-1104
[178] Serrano-Ruiz J C, Dumesic J A. ChemSusChem, 2009, 2(6): 581-586
[179] Fukuoka A, Dhepe P L. Angew. Chem. Int. Ed., 2006, 45(31): 5161-5163
[180] Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. J. Am. Chem. Soc., 2006, 128(27): 8714-8715
[181] Luo C, Wang S, Liu H. Angew. Chem. Int. Ed., 2007, 46(40): 7636-7639
[182] Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen J G. Angew. Chem. Int. Ed., 2008, 47(44): 8510-8513
[183] Deng W, Tan X, Fang W, Zhang Q, Wang Y. Catal. Lett., 2009, 133(1): 167-174
[184] Liu Y, Luo C, Liu H. Angew. Chem. Int. Ed., 2012, 51 (13): 3249-3253

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.