中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1231-1239 DOI: 10.7536/PC200536 Previous Articles   Next Articles

• Review •

Multi-Hierarchical Structural Characterization of Biological Condensed Matters

Guohua Xu1, Kai Cheng1, Chen Wang1, Conggang Li1,**()   

  1. 1. Key Laboratory of Magnetic Resonance in Biological Syetems, CAS, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • Received: Revised: Online: Published:
  • Contact: Conggang Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21874149); National Natural Science Foundation of China(21925406); National Natural Science Foundation of China(21904137); National Natural Science Foundation of China(21505152)
Richhtml ( 17 ) PDF ( 739 ) Cited
Export

EndNote

Ris

BibTeX

Biological Condensed Matters(BCM), which are composed of proteins, nucleic acids, polysaccharides and other Biological macromolecules, are ubiquitous inside the organism. These BCM form various structures to perform different function. The determination of the high-resolution structures of these BCM is importance of understanding the life process. In Vitro, X-ray crystallography, cryo-electron microscopy(cryo-EM) and nuclear magnetic resonance(NMR) are the main methods to obtain high-resolution structures, while nuclear magnetic resonance and chemical cross-linking mass spectrometry have unique advantages for in situ study of the structure of BCM in living cells. Here, we mainly summarize the research progress in the characterization of the structures of BCM: including purified molecular machines and fibrils, biomolecules under crowding, confinement, liquid-liquid phase separation and in living cells.

Contents

1 Introduction

2 The structural characterization of biomacromolecules in simple system

3 The structural characterization of biomacromolecules in liquid-liquid phase separation environment

4 The structural characterization of biomacromolecules in crowded and confined environments

5 The structural characterization of biomacromolecules in living cells

6 Conclusion and outlook

Table 1 Structural characterization methods of BCM.
Fig.1 High-resolution amyloid peptides and protein structures determined by solid-state NMR.(A) Ensemble of 20 lowest energy structures(top) and ribbon representation of the structure of TTR(105-115) in amyloid fibrils[15].(B) Structure of HET-s(218-289) fibrils(five molecules of HET-s are shown). The fibril axis is indicated by an arrow[17].(C) Ribbon representation of the lowest energy structure showing the alignment of Aβ42dimers along the fibril axis. Only residues 15-42 are shown[16]. Reproduced by reference 15~17 with permission from Copyright(2004) National Academy of Sciences(NAS), U. S. A., American Association for the Advancement of Science(AAAS), and the American Chemical Society(ACS), respectively
Fig.2
Fig.3 Ub3A and TTHA1718 structures in living sf9 cells[75].(A) The Ub3A structure in sf9 cells(left). Ub3A structures in sf9 cells(blue) and in diluted solution(red), showing the backbone atoms(right). (B) The TTHA1718 structure in sf9 cells(left). TTHA1718 structures in sf9 cells(blue) and in diluted solution(red), showing the backbone atoms(right). Reproduced by reference 75 with permission from John Wiley and Sons
[1]
Srivastava A P, Luo M, Zhou W, Symersky J, Bai D, Chambers M G, Faraldo-Gomez J D, Liao M, Mueller D M. Science, 2018, 360: eaas9699. https://www.ncbi.nlm.nih.gov/pubmed/29650704

doi: 10.1126/science.aas9699 pmid: 29650704
[2]
Kireeva M L, Kashlev M, Burton Z F. Chem. Rev., 2013,113:8325. https://www.ncbi.nlm.nih.gov/pubmed/24219496

doi: 10.1021/cr400436m pmid: 24219496
[3]
Khatter H, Myasnikov A G, Natchiar S K, Klaholz B P. Nature, 2015,520:640. https://www.ncbi.nlm.nih.gov/pubmed/25901680

doi: 10.1038/nature14427 pmid: 25901680
[4]
Bascos N A D, Landry S J. Int. J. Mol. Sci., 2019,20:6195.
[5]
Rayment I, Holden H M, Whittaker M, Yohn C B, Lorenz M, Holmes K C, Milligan R A. Science, 1993,261:58. https://www.ncbi.nlm.nih.gov/pubmed/8316858

doi: 10.1126/science.8316858 pmid: 8316858
[6]
Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B. Nature Commun., 2014,5:5364.
[7]
Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Pluckthun A, Wang C, Knossow M. Nat. Struct. Mol. Biol., 2013,20:1001. https://www.ncbi.nlm.nih.gov/pubmed/23872990

doi: 10.1038/nsmb.2624 pmid: 23872990
[8]
Atherton J, Farabella I, Yu I M, Rosenfeld S S, Houdusse A, Topf M, Moores C A. ELife, 2014,3:e03680. https://www.ncbi.nlm.nih.gov/pubmed/25209998

pmid: 25209998
[9]
Shang Z, Zhou K, Xu C, Csencsits R, Cochran J C, Sindelar C V. ELife, 2014,3:e04686. https://www.ncbi.nlm.nih.gov/pubmed/25415053

doi: 10.7554/eLife.04686 pmid: 25415053
[10]
Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G. Nature, 2012,484:345. https://www.ncbi.nlm.nih.gov/pubmed/22398446

doi: 10.1038/nature10955 pmid: 22398446
[11]
Bertelsen E B, Chang L, Gestwicki J E, Zuiderweg E R. Proc. Natl. Acad. Sci. U. S. A., 2009,106:8471. https://www.ncbi.nlm.nih.gov/pubmed/19439666

doi: 10.1073/pnas.0903503106 pmid: 19439666
[12]
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R M, Zhu P, Li G. Science, 2014,344:376. https://www.ncbi.nlm.nih.gov/pubmed/24763583

doi: 10.1126/science.1251413 pmid: 24763583
[13]
Spencer R G, Halverson K J, Auger M, McDermott A E, Griffin R G, Lansbury Jr P T. Biochemistry, 1991,30:10382. https://www.ncbi.nlm.nih.gov/pubmed/1931962

doi: 10.1021/bi00107a004 pmid: 1931962
[14]
Lansbury Jr. P T, Costa P R, Griffiths J M, Simon E J, Auger M, Halverson K J, Kocisko D A, Hendsch Z S, Ashburn T T, Spencer R G, Tidor B, Griffin R G. . Nat. Struct. Biol., 1995,2:990. https://www.ncbi.nlm.nih.gov/pubmed/7583673

doi: 10.1038/nsb1195-990 pmid: 7583673
[15]
Jaroniec C P, MacPhee C E, Bajaj V S, McMahon M T, Dobson C M, Griffin R G. Proc. Natl. Acad. Sci. U. S. A., 2004,101:711. https://www.ncbi.nlm.nih.gov/pubmed/14715898

doi: 10.1073/pnas.0304849101 pmid: 14715898
[16]
Colvin M T, Silvers R, Ni Q Z, Can T V, Sergeyev I, Rosay M, Donovan K J, Michael B, Wall J, Linse S, Griffin R G. J. Am. Chem. Soc., 2016,138:9663. https://www.ncbi.nlm.nih.gov/pubmed/27355699

doi: 10.1021/jacs.6b05129 pmid: 27355699
[17]
Wasmer C, Lange A, Van Melckebeke H, Siemer A B, Riek R, Meier B H. Science, 2008,319:1523. https://www.ncbi.nlm.nih.gov/pubmed/18339938

doi: 10.1126/science.1151839 pmid: 18339938
[18]
Tuttle M D, Comellas G, Nieuwkoop A J, Covell D J, Berthold D A, Kloepper K D, Courtney J M, Kim J K, Barclay A M, Kendall A, Wan W, Stubbs G, Schwieters C D, Lee V M Y, George J M, Rienstra C M. Nat. Struct. Mol. Biol., 2016,23:409. https://www.ncbi.nlm.nih.gov/pubmed/27018801

doi: 10.1038/nsmb.3194 pmid: 27018801
[19]
Struppe J, Quinn C M, Lu M M, Wang M Z, Hou G J, Lu X Y, Kraus J, Andreas L B, Stanek J, Lalli D, Lesage A, Pintacuda G, Maas W, Gronenborn A M, Polenova T. Solid. State. Nucl. Mag., 2017,87:117. https://linkinghub.elsevier.com/retrieve/pii/S0926204017300486

doi: 10.1016/j.ssnmr.2017.07.001
[20]
Linser R, Dasari M, Hiller M, Higman V, Fink U, del Amo J M L, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B. Angew. Chem. Int. Edit., 2011,50:4508. f9bdcf2c-1c56-491a-a188-67d66a87111bhttp://dx.doi.org/10.1002/anie.201008244

doi: 10.1002/anie.201008244
[21]
Stanek J, Andreas L B, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu Z Q, Dixon N E, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. Angew. Chem. Int. Edit., 2016,55:15503.
[22]
Nadaud P S, Helmus J J, Hofer N, Jaroniec C P. J. Am. Chem. Soc., 2007,129:7502. https://www.ncbi.nlm.nih.gov/pubmed/17530852

doi: 10.1021/ja072349t pmid: 17530852
[23]
Sengupta I, Nadaud P S, Helmus J J, Schwieters C D, Jaroniec C P. Nat. Chem., 2012,4:410. https://www.ncbi.nlm.nih.gov/pubmed/22522262

doi: 10.1038/nchem.1299 pmid: 22522262
[24]
Theint T, Xia Y J, Nadaud P S, Mukhopadhyay D, Schwieters C D, Surewicz K, Surewicz W K, Jaroniec C P. J. Am. Chem. Soc., 2018,140:13161. https://www.ncbi.nlm.nih.gov/pubmed/30295029

doi: 10.1021/jacs.8b06758 pmid: 30295029
[25]
Bayro M J, Debelouchina G T, Eddy M T, Birkett N R, MacPhee C E, Rosay M, Maas W E, Dobson C M, Griffin R G. J. Am. Chem. Soc., 2011,133:13967. https://www.ncbi.nlm.nih.gov/pubmed/21774549

doi: 10.1021/ja203756x pmid: 21774549
[26]
Potapov A, Yau W M, Ghirlando R, Thurber K R, Tycko R. J. Am. Chem. Soc., 2015,137:8294. https://www.ncbi.nlm.nih.gov/pubmed/26068174

doi: 10.1021/jacs.5b04843 pmid: 26068174
[27]
Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A, Cheng Y. Nat. Methods, 2013,10:584. https://www.ncbi.nlm.nih.gov/pubmed/23644547

doi: 10.1038/nmeth.2472 pmid: 23644547
[28]
Guerrero-Ferreira R, Taylor N M I, Mona D, Ringler P, Lauer M E, Riek R, Britschgi M, Stahlberg H. Elife, 2018,7:e36402. https://www.ncbi.nlm.nih.gov/pubmed/29969391

doi: 10.7554/eLife.36402 pmid: 29969391
[29]
Boyer D R, Li B, Sun C, Fan W, Zhou K, Hughes M P, Sawaya M R, Jiang L, Eisenberg D S. Proc. Natl. Acad. Sci. U.S. A., 2020,117:3592.
[30]
Radamaker L, Lin Y H, Annamalai K, Huhn S, Hegenbart U, Schonland S O, Fritz G, Schmidt M, Fandrich M. Nat. Commun., 2019,10:1103. https://www.ncbi.nlm.nih.gov/pubmed/30894526

doi: 10.1038/s41467-019-09032-0 pmid: 30894526
[31]
Gremer L, Scholzel D, Schenk C, Reinartz E, Labahn J, Ravelli R B G, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schroder G F. Science, 2017,358:116. https://www.ncbi.nlm.nih.gov/pubmed/28882996

doi: 10.1126/science.aao2825 pmid: 28882996
[32]
Fitzpatrick A W P, Falcon B, He S, Murzin A G, Murshudov G, Garringer H J, Crowther R A, Ghetti B, Goedert M, Scheres S H W. Nature, 2017,547:185. https://www.ncbi.nlm.nih.gov/pubmed/28678775

doi: 10.1038/nature23002 pmid: 28678775
[33]
Falcon B, Zhang W J, Murzin A G, Murshudov G, Garringer H J, Vidal R, Crowther R A, Ghetti B, Scheres S H W, Goedert M. Nature, 2018,561:137. https://www.ncbi.nlm.nih.gov/pubmed/30158706

doi: 10.1038/s41586-018-0454-y pmid: 30158706
[34]
Brangwynne C P, Eckmann C R, Courson D S, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman A A. Science, 2009,324:1729. https://www.ncbi.nlm.nih.gov/pubmed/19460965

doi: 10.1126/science.1172046 pmid: 19460965
[35]
Buchan J R, Parker R. Mol. Cell, 2009,36:932. https://www.ncbi.nlm.nih.gov/pubmed/20064460

doi: 10.1016/j.molcel.2009.11.020 pmid: 20064460
[36]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017,18:285. https://doi.org/10.1038/nrm.2017.7

doi: 10.1038/nrm.2017.7 pmid: 28225081
[37]
Decker C J, Parker R. Cold Spring Harb. Perspect. Biol., 2012,4:a012286. https://www.ncbi.nlm.nih.gov/pubmed/22763747

doi: 10.1101/cshperspect.a012286 pmid: 22763747
[38]
Feng Z, Zeng M, Chen X, Zhang M. Biochemistry, 2018,57:2530. https://www.ncbi.nlm.nih.gov/pubmed/29648450

doi: 10.1021/acs.biochem.8b00313 pmid: 29648450
[39]
Jain A, Vale R D. Nature, 2017,546:243. https://www.ncbi.nlm.nih.gov/pubmed/28562589

doi: 10.1038/nature22386 pmid: 28562589
[40]
Patel A, Lee H O, Jawerth L, Maharana S, Jahnel M, Hein M Y, Stoynov S, Mahamid J, Saha S, Franzmann T M, Pozniakovski A, Poser I, Maghelli N, Royer L A, Weigert M, Myers E W, Grill S, Drechsel D, Hyman A A, Alberti S. Cell, 2015,162:1066. https://www.ncbi.nlm.nih.gov/pubmed/26317470

pmid: 26317470
[41]
Dellaire G, Eskiw C H, Dehghani H, Ching R W, Bazett-Jones D P. J. Cell Sci., 2006,119:1034. https://www.ncbi.nlm.nih.gov/pubmed/16492707

doi: 10.1242/jcs.02817 pmid: 16492707
[42]
Hoyle N P, Castelli L M, Campbell S G, Holmes L E, Ashe M P. J. Cell Biol., 2007,179:65. https://www.ncbi.nlm.nih.gov/pubmed/17908917

doi: 10.1083/jcb.200707010 pmid: 17908917
[43]
Louria-Hayon I, Grossman T, Sionov R V, Alsheich O, Pandolfi P P, Haupt Y. J. Biol. Chem., 2003,278:33134. https://www.ncbi.nlm.nih.gov/pubmed/12810724

doi: 10.1074/jbc.M301264200 pmid: 12810724
[44]
Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska K, Malcova I, Novakova L, Janoskova D, Valasek L, Hasek J. J. Cell Sci., 2009,122:2078. https://www.ncbi.nlm.nih.gov/pubmed/19470581

doi: 10.1242/jcs.045104 pmid: 19470581
[45]
Le Ferrand H, Duchamp M, Gabryelczyk B, Cai H, Miserez A. J. Am. Chem. Soc., 2019,141:7202. https://pubs.acs.org/doi/10.1021/jacs.9b03083

doi: 10.1021/jacs.9b03083 pmid: 30986043
[46]
Kato M, Han T W, Xie S, Shi K, Du X, Wu L C, Mirzaei H, Goldsmith E J, Longgood J, Pei J, Grishin N V, Frantz D E, Schneider J W, Chen S, Li L, Sawaya M R, Eisenberg D, Tycko R, McKnight S L. Cell, 2012,149:753. 85f036bc-19d3-458f-902c-3a9352e53be7http://dx.doi.org/10.1016/j.cell.2012.04.017

doi: 10.1016/j.cell.2012.04.017 pmid: 22579281
[47]
Sun Z, Diaz Z, Fang X, Hart M P, Chesi A, Shorter J, Gitler A D. PLoS biol., 2011,9:e1000614. https://www.ncbi.nlm.nih.gov/pubmed/21541367

doi: 10.1371/journal.pbio.1000614 pmid: 21541367
[48]
Brady J P, Farber P J, Sekhar A, Lin Y H, Huang R, Bah A, Nott T J, Chan H S, Baldwin A J, Forman-Kay J D, Kay L E. Proc. Natl. Acad. Sci. U.S.A., 2017,114:E8194. https://www.ncbi.nlm.nih.gov/pubmed/28894006

doi: 10.1073/pnas.1706197114 pmid: 28894006
[49]
Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Nat. Commun., 2017,8:275. https://www.ncbi.nlm.nih.gov/pubmed/28819146

doi: 10.1038/s41467-017-00480-0 pmid: 28819146
[50]
Reichheld S E, Muiznieks L D, Keeley F W, Sharpe S. Proc. Natl. Acad. Sci. USA, 2017,114:E4408. https://www.ncbi.nlm.nih.gov/pubmed/28507126

doi: 10.1073/pnas.1701877114 pmid: 28507126
[51]
Ackermann B E, Debelouchina G T. Angew. Chem. Int. Edit., 2019,58:6300. https://onlinelibrary.wiley.com/toc/15213773/58/19

doi: 10.1002/anie.v58.19
[52]
Ellis R J. Curr. Opin. Struct. Biol., 2001,11:114. https://www.ncbi.nlm.nih.gov/pubmed/11179900

doi: 10.1016/s0959-440x(00)00172-x pmid: 11179900
[53]
Bai J, Liu M, Pielak G J, Li C. Chemphyschem, 2017,18:55. https://www.ncbi.nlm.nih.gov/pubmed/27860069

doi: 10.1002/cphc.201601097 pmid: 27860069
[54]
Theillet F X, Binolfi A, Bekei B, Martorana A, Rose H M, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P. Nature, 2016,530:45. https://www.ncbi.nlm.nih.gov/pubmed/26808899

doi: 10.1038/nature16531 pmid: 26808899
[55]
徐国华(Xu G H), 李从刚(Li C G), 刘买利(Liu M L). 化学进展(Progress in Chemistry), 2017,29(1):75.
[56]
Akabayov S R, Akabayov B, Richardson C C, Wagner G. J. Am. Chem. Soc., 2013,135:10040. https://www.ncbi.nlm.nih.gov/pubmed/23767688

doi: 10.1021/ja404404h pmid: 23767688
[57]
Perham M, Stagg L, Wittung-Stafshede P. FEBS Lett., 2007,581:5065. https://www.ncbi.nlm.nih.gov/pubmed/17919600

doi: 10.1016/j.febslet.2007.09.049 pmid: 17919600
[58]
Rodriguez G, Orris B, Majumdar A, Bhat S, Stivers J T. DNA Repair, 2020,86:102764. https://www.ncbi.nlm.nih.gov/pubmed/31855846

doi: 10.1016/j.dnarep.2019.102764 pmid: 31855846
[59]
Miyoshi D, Karimata H, Sugimoto N. Angew. Chem. Int. Edit., 2005,44:3740. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[60]
Kan Z Y, Yao Y A, Wang P, Li X H, Hao Y H, Tan Z. Angew. Chem. Int. Edit., 2006,45:1629. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[61]
Xue Y, Kan Z Y, Wang Q, Yao Y, Liu J, Hao Y H, Tan Z. J. Am. Chem. Soc., 2007,129:11185. https://www.ncbi.nlm.nih.gov/pubmed/17705383

doi: 10.1021/ja0730462 pmid: 17705383
[62]
Kan Z Y, Lin Y, Wang F, Zhuang X Y, Zhao Y, Pang D W, Hao Y H, Tan Z. Nucleic Acids Res., 2007,35:3649.
[63]
Zheng K W, Chen Z, Hao Y H, Tan Z. Nucleic Acids Res., 2010,38:327. https://www.ncbi.nlm.nih.gov/pubmed/19858105

doi: 10.1093/nar/gkp898 pmid: 19858105
[64]
Yu H Q, Gu X B, Nakano S, Miyoshi D, Sugimoto N. J. Am. Chem. Soc., 2012,134:20060. https://www.ncbi.nlm.nih.gov/pubmed/22934853

doi: 10.1021/ja305384c pmid: 22934853
[65]
Heddi B, Phan A T. J. Am. Chem. Soc., 2011,133:9824. https://www.ncbi.nlm.nih.gov/pubmed/21548653

doi: 10.1021/ja200786q pmid: 21548653
[66]
Hansel R, Lohr F, Trantirek L, Dotsch V. J. Am. Chem. Soc., 2013,135:2816. https://www.ncbi.nlm.nih.gov/pubmed/23339582

doi: 10.1021/ja312403b pmid: 23339582
[67]
Babu C R, Flynn P F, Wand A J. J. Am. Chem. Soc., 2001,123:2691. https://www.ncbi.nlm.nih.gov/pubmed/11456950

doi: 10.1021/ja005766d pmid: 11456950
[68]
O’Brien E S, Nucci N V, Fuglestad B, Tommos C, Wand A J. J. Biol. Chem., 2015,290:30879. https://www.ncbi.nlm.nih.gov/pubmed/26487716

doi: 10.1074/jbc.M115.689406 pmid: 26487716
[69]
Peterson R W, Anbalagan K, Tommos C, Wand A J. J. Am. Chem. Soc., 2004,126:9498. https://www.ncbi.nlm.nih.gov/pubmed/15291527

doi: 10.1021/ja047900q pmid: 15291527
[70]
Martinez A V, Malolepsza E, Rivera E, Lu Q, Straub J E. J. Chem. Phys., 2014, 141: 22D530. https://www.ncbi.nlm.nih.gov/pubmed/25494801

doi: 10.1063/1.4902550 pmid: 25494801
[71]
Xu G, Cheng K, Wu Q, Liu M, Li C. Angew. Chem. Int. Edit., 2017,56:530.
[72]
Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith B O, Shirakawa M, Guntert P, Ito Y. Nature, 2009,458:102. https://www.ncbi.nlm.nih.gov/pubmed/19262674

doi: 10.1038/nature07814 pmid: 19262674
[73]
Muntener T, Haussinger D, Selenko P, Theillet F X. J. Phys. Chem. Lett., 2016,7:2821. https://www.ncbi.nlm.nih.gov/pubmed/27379949

doi: 10.1021/acs.jpclett.6b01074 pmid: 27379949
[74]
Pan B B, Yang F, Ye Y, Wu Q, Li C, Huber T, Su X C. Chem. Comm., 2016,52:10237. https://www.ncbi.nlm.nih.gov/pubmed/27470136

doi: 10.1039/c6cc05490k pmid: 27470136
[75]
Tanaka T, Ikeya T, Kamoshida H, Suemoto Y, Mishima M, Shirakawa M, Guntert P, Ito Y. Angew. Chem. Int. Edit., 2019,58:7284. https://onlinelibrary.wiley.com/toc/15213773/58/22

doi: 10.1002/anie.v58.22
[76]
Sustarsic M, Kapanidis A N. Curr. Opin. Struct. Biol., 2015,34:52. https://www.ncbi.nlm.nih.gov/pubmed/26295172

doi: 10.1016/j.sbi.2015.07.001 pmid: 26295172
[77]
Sakon J J, Weninger K R. Nat. Methods, 2010,7:203. https://www.ncbi.nlm.nih.gov/pubmed/20118931

doi: 10.1038/nmeth.1421 pmid: 20118931
[78]
Konig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stuber J C, Pluckthun A, Nettels D, Schuler B. Nat. Methods, 2015,12:773. https://www.ncbi.nlm.nih.gov/pubmed/26147918

doi: 10.1038/nmeth.3475 pmid: 26147918
[79]
Okamoto K, Hibino K, Sako Y. Biochim. Biophys. Acta Gen. Subj., 2020,1864:129358. https://www.ncbi.nlm.nih.gov/pubmed/31071411

doi: 10.1016/j.bbagen.2019.04.022 pmid: 31071411
[80]
Fessl T, Adamec F, Polivka T, Foldynova-Trantirkova S, Vacha F, Trantírek L. Nucleic Acids Res., 2012,40:e121. https://www.ncbi.nlm.nih.gov/pubmed/22544706

doi: 10.1093/nar/gks333 pmid: 22544706
[81]
Crawford R, Torella J P, Aigrain L, Plochowietz A, Gryte K, Uphoff S, Kapanidis A N. Biophys. J., 2013,105:2439. https://www.ncbi.nlm.nih.gov/pubmed/24314075

doi: 10.1016/j.bpj.2013.09.057 pmid: 24314075
[82]
樊盛博(Fan S S), 吴妍洁(Wu Y J), 杨兵(Yang B), 迟浩(Chi H), 孟佳明(Meng J M), 卢珊(Lu S), 张昆(Zhang K), 邬龙(Wu L), 孙瑞祥(Sun S X), 董梦秋(Dong M Q), 贺思敏(He S M). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2014,41(11):1109.
[83]
Zheng C, Yang L, Hoopmann M R, Eng J K, Tang X, Weisbrod C R, Bruce J E. Mol. Cell. Proteomics, 2011. DOI: 10: M110.006841. https://www.ncbi.nlm.nih.gov/pubmed/32737216

doi: 10.1074/mcp.RA120.002049 pmid: 32737216
[84]
Navare A T, Chavez J D, Zheng C, Weisbrod C R, Eng J K, Siehnel R, Singh P K, Manoil C, Bruce J E. Structure, 2015,23:762. https://www.ncbi.nlm.nih.gov/pubmed/25800553

doi: 10.1016/j.str.2015.01.022 pmid: 25800553
[85]
Chavez J D, Weisbrod C R, Zheng C, Eng J K, Bruce J E. Mol. Cell. Proteomics, 2013,12:1451. https://www.ncbi.nlm.nih.gov/pubmed/23354917

doi: 10.1074/mcp.M112.024497 pmid: 23354917
[86]
Chavez J D, Lee C F, Caudal A, Keller A, Tian R, Bruce J E. Cell Syst., 2018,6:136. https://www.ncbi.nlm.nih.gov/pubmed/29199018

doi: 10.1016/j.cels.2017.10.017 pmid: 29199018
[87]
Schweppe D K, Chavez J D, Lee C F, Caudal A, Kruse S E, Stuppard R, Marcinek D J, Shadel G S, Tian R, Bruce J E. Proc. Natl. Acad. Sci. U. S. A., 2017,114:1732. https://www.ncbi.nlm.nih.gov/pubmed/28130547

doi: 10.1073/pnas.1617220114 pmid: 28130547
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[15] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.