中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1136-1152 DOI: 10.7536/PC210537 Previous Articles   Next Articles

• Review •

The Fluorescent Probe for Detecting Glutathione

Fanyong Yan(), Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu   

  1. State Key Laboratory of Separation Membrane and Membrane Processes/National International Joint Research Center for Separation Membrane Science and Technology, School of Chemical Engineering and Technology, Tiangong University,Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: Fanyong Yan
Richhtml ( 62 ) PDF ( 728 ) Cited
Export

EndNote

Ris

BibTeX

As the most abundant non-protein sulfhydryl compound in cells, glutathione plays an important role in maintaining normal physiological activities of the human body. Therefore, it is of great significance to be able to detect glutathione efficiently and sensitively. Fluorescent probe method has become the main method for the determination of glutathione in biological samples due to its advantages of convenient operation, excellent specificity and high sensitivity. The successful application of fluorescent probe method is also attributed to the special structural features of GSH, such as the nucleophilicity of sulfhydryl groups, reduction, high affinity for metal ions and the synergistic reaction ability of amino groups. Based on the classification of the probe structure, the fluorescent probes that can specifically detect glutathione in the past five years are divided into two categories: organic fluorescent probes and inorganic fluorescent probes. According to the structural characteristics of coumarin, BODIPY, rhodamine, cyanine, benzothiazole, naphthalimide, metal-organic framework, semiconductor quantum dots, carbon dots, metal nano, manganese dioxide nanosheet, graphene quantum dots, etc., organic fluorescent probes/inorganic fluorescent probes, the sensing mechanisms of Michael addition reaction, nucleophilic substitution, reduction reaction, and thiol-induced breakage reaction and complexation reaction of 2,4-dinitrobenzenesulfonyl are reviewed. Meanwhile, the design strategy, response model for glutathione and practical application of the probes are described and analyzed. We really look forward to providing a new idea for the construction of a new glutathione fluorescent probe.

Contents

1 Introduction

2 Organic small molecule fluorescent probes for GSH

2.1 Coumarin-based fluorescent probes for GSH

2.2 BODIPY-based fluorescent probes for GSH

2.3 Rhodamine-based fluorescent probes for GSH

2.4 Cyanine-based fluorescent probes for GSH

2.5 Benzothiazole-based fluorescent probes for GSH

2.6 Naphthalimide-based fluorescent probes for GSH

2.7 Metal-organic framework-based fluorescent probes for GSH

2.8 Other organic fluorescent probes for GSH

3 Inorganic nano-fluorescent probes for GSH

3.1 Semiconductor quantum dots for GSH

3.2 Carbon dots for GSH

3.3 Metal nano-fluorescent probes for GSH

3.4 Manganese dioxide nanosheet-based fluorescent probes for GSH

4 Conclusion and outlook

Fig. 1 The detection mechanism of Coumarin-based fluorescent probe based on Michael addition for GSH
Fig. 2 The detection mechanism of probe G-1 for GSH[20]
Fig. 3 The detection mechanism of probe G-2 and G-3for GSH[21,22]
Fig. 4 The detection mechanism of nucleophilic substituted glutathione-coumarin-based fluorescent probe
Fig. 5 The detection mechanism of probe G-4 and G-5 for GSH[23,24]
Fig. 6 The detection mechanism of probe G-6 for GSH[25]
Fig. 7 The detection mechanism of probe G-7 for GSH[26]
Fig. 8 The detection mechanism of Coumarin-based fluorescent probe based on demetallization reaction for GSH
Fig. 9 The detection mechanism of probe G-8 and G-9 for GSH[27,28]
Fig. 10 The detection mechanism of BODIPY-based fluorescent probe based on aromatic ring substitution for GSH
Fig. 11 The detection mechanism of probe G-10 for GSH[29]
Fig. 12 The detection mechanism of probe G-11 for GSH[30]
Fig. 13 The detection mechanism of probe G-12 for GSH[31]
Fig. 14 The detection mechanism of BODIPY-based fluorescent probe with sulfhydryl cutting as design strategy for GSH
Fig. 15 The detection mechanism of probe G-13 for GSH[32]
Fig. 16 The detection mechanism of probe G-14 for GSH[33]
Fig. 17 The detection mechanism of Rhodamine-based fluorescent probes for GSH
Fig. 18 The detection mechanism of probe G-15 for GSH[34]
Fig. 19 The detection mechanism of probe G-16 for GSH[35]
Fig. 20 The detection mechanism of probe G-17 and G-18 for GSH[36,37]
Fig. 21 The detection mechanism of Cyanine-based fluorescent probe with thioether bond and ether bond as recognition site for GSH
Fig. 22 The detection mechanism of probe G-19 and G-20 for GSH[38]
Fig. 23 The detection mechanism of probe G-21 for GSH[39]
Fig. 24 The detection mechanism of Benzothiazole-based fluorescent probes for GSH
Fig. 25 The detection mechanism of probe G-22 and G-23 for GSH[40,41]
Fig. 26 The detection mechanism of probe G-24 for GSH[42]
Fig. 27 The detection mechanism of Naphthalimide-based fluorescent probes for GSH
Fig. 28 The detection mechanism of probe G-25 and G-26 for GSH[43]
Fig. 29 The detection mechanism of probe G-27 for GSH[44]
Fig. 30 The detection mechanism of probe G-28 for GSH[45]
Fig. 31 The detection mechanism of probe G-29 for GSH[46]
Fig. 32 The detection mechanism of probe G-30 for GSH[47]
Fig. 33 The detection mechanism of probe G-31 for GSH[48]
Fig. 34 The detection mechanism of probe G-32 for GSH[49]
Fig. 35 The detection mechanism of probe G-33 for GSH[50]
Fig. 36 The detection mechanism of probe based on disulfide bond-mercaptan exchange reactions for GSH
Fig. 37 The detection mechanism of probe G-35 for GSH[52]
Fig. 38 The detection mechanism of probe G-36 for GSH[53]
Fig. 39 The detection mechanism of probe G-37 for GSH[54]
Fig. 40 The detection mechanism of probe G-38 for GSH[55]
Fig. 41 The detection mechanism of probe G-40 for GSH[57]
Fig. 42 The detection mechanism of probe G-41 for GSH[58]
Fig. 43 The detection mechanism of probe G-45 for GSH[63]
Fig. 44 The detection mechanism of probe G-46 for GSH[64]
Fig. 45 The detection mechanism of probe G-49 for GSH[66,67]
Fig. 46 The detection mechanism of probe G-51 for GSH[69]
Fig. 47 The detection mechanism of probe G-52 for GSH[70]
Fig. 48 The detection mechanism of probe G-53 for GSH[71]
Fig. 49 The detection mechanism of probe G-55 for GSH[73]
Table 1 Comparison of GSH Probe Sensing Performance and Applications
[1]
Bjørklund G, Tinkov A A, Hosnedlová B, Kizek R, Ajsuvakova O P, Chirumbolo S, Skalnaya M G, Peana M, Dadar M, El-Ansary A, Qasem H, Adams J B, Aaseth J, Skalny A V. Free Radical. Bio. Med., 2020, 160: 149.

doi: S0891-5849(20)31153-9 pmid: 32745763
[2]
Lv H, Zhen C X, Liu J Y, Yang P F, Hu L J, Shang P. Oxidative Med. Cell. Longev., 2019, 2019: 1.
[3]
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. J. Psychopharmacol., 2019, 33(10): 1199.

doi: 10.1177/0269881119845820 pmid: 31039654
[4]
Wang L X, Ahn Y J, Asmis R. Redox Biol., 2020, 31: 101410.

doi: 10.1016/j.redox.2019.101410
[5]
Li J, Kwon Y, Chung K S, Lim C S, Lee D, Yue Y K, Yoon J, Kim G, Nam S J, Chung Y W, Kim H M, Yin C X, Ryu J H, Yoon J,. Theranostics, 2018, 8(5): 1411.

doi: 10.7150/thno.22252
[6]
Hanko M, Švorc L’, Planková A, Mikuš P. Anal. Chimica Acta, 2019, 1062: 1.

doi: 10.1016/j.aca.2019.02.052
[7]
Nesakumar N, Berchmans S, Alwarappan S. Sens. Actuat. B: Chem., 2018, 264: 448.

doi: 10.1016/j.snb.2018.01.224
[8]
Liu T, Yue Y, Zhai Y, Guo Z, Zhao W, Yang X, Chen D, Yin C. Chem.Commun., 2021, 57(100), 13764.
[9]
Tian M, Liu Y, Jiang F L. Anal. Chem., 2020, 92(21): 14285.

doi: 10.1021/acs.analchem.0c03418
[10]
Xu Z Y, Qin T Y, Zhou X F, Wang L, Liu B. Trac Trends Anal. Chem., 2019, 121: 115672.

doi: 10.1016/j.trac.2019.115672
[11]
Shen B X, Zhu W, Zhi X, Qian Y. Talanta, 2020, 208: 120461.

doi: 10.1016/j.talanta.2019.120461
[12]
Wang T T. Master Dissertation of Lanzhou University, 2019.
(王婷婷. 兰州大学硕士论文, 2019.).
[13]
Chen D, Feng Y. Crit. Rev. Anal. Chem., 2022, 52(3): 649.

doi: 10.1080/10408347.2020.1819193
[14]
Chen L, Li J B, Chen D G. Chinese Journal of Organic Chemistry, 2021, 41(2): 611.

doi: 10.6023/cjoc202006046
(陈莉, 黎俊波, 陈杜刚. 有机化学, 2020, 41(2): 611.)
[15]
Lee S, Li J, Zhou X, Yin J, Yoon J. Coord. Chem. Rev., 2018, 366: 29.

doi: 10.1016/j.ccr.2018.03.021
[16]
Yang J J. Master Dissertation of Nanjing Normal University, 2017.
(杨敬敬. 南京师范大学硕士论文, 2017.).
[17]
Dai J N, Ma C G, Zhang P, Fu Y Q, Shen B X. Dyes Pigments, 2020, 177: 108321.

doi: 10.1016/j.dyepig.2020.108321
[18]
Zamir G,. Khan P O P. Microchem. J., 2020, 157: 105011.

doi: 10.1016/j.microc.2020.105011
[19]
Tian M, Feng Y L, Jiang L. Anal. Chem., 2020, 92: 14285.

doi: 10.1021/acs.analchem.0c03418
[20]
Chen Z Y, Sun Q, Yao Y H, Fan X X, Zhang W B, Qian J H. Biosens. Bioelectron., 2017, 91: 553.

doi: 10.1016/j.bios.2017.01.013
[21]
Khatun S, Yang S, Zhao T Q, Lu Y X. Anal. Chem., 2020, 92: 10989.

doi: 10.1021/acs.analchem.9b05175
[22]
Tian M, Yang M, Liu Y, Jiang F L. ACS Appl. Bio Mater., 2019, 2(10): 4503.

doi: 10.1021/acsabm.9b00642
[23]
Li Y, Liu W M, Zhang P P, Zhang H Y, Wu J S, Ge J C, Wang P F. Biosens. Bioelectron., 2017, 90: 117.

doi: 10.1016/j.bios.2016.11.021
[24]
Yin G X, Niu T T, Gan Y B, Yu T, Yin P, Chen H M, Zhang Y Y, Li H T, Yao S Z. Angew. Chem. Int. Ed., 2018, 57(18): 4991.

doi: 10.1002/anie.201800485
[25]
Zou Y X, Li M S, Xing Y L, Duan T T, Zhou X J, Yu F B. ACS Sens., 2020, 5(1): 242.

doi: 10.1021/acssensors.9b02118
[26]
Yang Y, Wang Y Z, Feng Y, Cao C, Song X R, Zhang G L, Liu W S. J. Mater. Chem. B, 2019, 7(48): 7723.

doi: 10.1039/c9tb01645g pmid: 31746929
[27]
He G J, Li J, Wang Z Q, Liu C X, Liu X L, Ji L G, Xie C Y, Wang Q Z. Tetrahedron, 2017, 73(3): 272.

doi: 10.1016/j.tet.2016.12.012
[28]
He G J, Hua X B, Yang N, Li L L, Xu J H, Yang L L, Wang Q Z, Ji L G. Bioorg. Chem., 2019, 91: 103176.

doi: 10.1016/j.bioorg.2019.103176
[29]
Liu X L, Niu L Y, Chen Y Z, Zheng M L, Yang Y X, Yang Q Z. Org. Biomol. Chem., 2017, 15(5): 1072.

doi: 10.1039/C6OB02407F
[30]
Xiang H J, Tham H P, Nguyen M D, Fiona Phua S Z, Lim W Q, Liu J G, Zhao Y L. Chem. Commun., 2017, 53(37): 5220.

doi: 10.1039/C7CC01814B
[31]
Chen X X, Niu L Y, Shao N, Yang Q Z. Anal. Chem., 2019, 91(7): 4301.

doi: 10.1021/acs.analchem.9b00169
[32]
Wang F F, Fan X Y, Liu Y J, Gao T, Huang R, Jiang F L, Liu Y. Dyes Pigments, 2017, 145: 451.

doi: 10.1016/j.dyepig.2017.06.033
[33]
Liu X L, Niu L Y, Chen Y Z, Yang Y X, Yang Q Z. Biosens. Bioelectron., 2017, 90: 403.

doi: 10.1016/j.bios.2016.06.076
[34]
Ouyang J, Li C Y, Li Y F, Fei J J, Xu F, Li S J, Nie S X. Sens. Actuat. B: Chem., 2017, 240: 1165.

doi: 10.1016/j.snb.2016.09.074
[35]
Chen L Y, Park J S, Wu D, Kim C H, Yoon J. Sens. Actuat. B: Chem., 2018, 262: 306.

doi: 10.1016/j.snb.2018.02.023
[36]
Tong L L, Qian Y. J. Mater. Chem. B, 2018, 6(12): 1791.

doi: 10.1039/C7TB03199H
[37]
Yang X, Qian Y. J. Mater. Chem. B, 2018, 6(45): 7486.

doi: 10.1039/c8tb02309c pmid: 32254750
[38]
Lee D, Jeong K, Luo X, Kim G, Yang Y J, Chen X Q, Kim S, Yoon J. J. Mater. Chem. B, 2018, 6(17): 2541.

doi: 10.1039/C7TB01560G
[39]
He L W, Yang X L, Xu K X, Kong X Q, Lin W Y. Chem. Sci., 2017, 8(9): 6257.

doi: 10.1039/C7SC00423K
[40]
Chen S, Li H M, Hou P. Tetrahedron, 2017, 73(5): 589.

doi: 10.1016/j.tet.2016.12.049
[41]
Zheng Y L, Zhang H C, Tian D H, Duan D C, Dai F, Zhou B. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 238: 118429.

doi: 10.1016/j.saa.2020.118429
[42]
Zhang S W, Wu D D, Jiang X, Xie F, Jia X D, Song X L, Yuan Y. Sens. Actuat. B: Chem., 2019, 290: 691.

doi: 10.1016/j.snb.2019.04.028
[43]
Liu G T, Han X, Zhang J, Xu Z Q, Liu S H, Zeng L T, Yin J. Dyes Pigments, 2018, 148: 292.

doi: 10.1016/j.dyepig.2017.09.016
[44]
Xu Z Q, Zhang M X, Li G J, Chen X Q, Liu S H, Chen H Y, Yin J. Dyes Pigments, 2019, 171: 107685.

doi: 10.1016/j.dyepig.2019.107685
[45]
Zong H C, Peng J Y, Li X R, Liu M, Hu Y Z, Li J, Zang Y, Li X, James T D. Chem. Commun., 2020, 56(4): 515.

doi: 10.1039/C9CC07753G
[46]
Zhu J Y, Xia T F, Cui Y J, Yang Y, Qian G D. J. Solid State Chem., 2019, 270: 317.

doi: 10.1016/j.jssc.2018.11.032
[47]
Wang N, Xie M G, Wang M K, Li Z X, Su X G. Talanta, 2020, 220: 121352.

doi: 10.1016/j.talanta.2020.121352
[48]
Jalili R, Khataee A, Rashidi M R, Luque R. Sens. Actuat. B: Chem., 2019, 297: 126775.

doi: 10.1016/j.snb.2019.126775
[49]
Cui M M, Li W T, Wang L Y, Gong L S, Tang H, Cao D R. J. Mater. Chem. C, 2019, 7(13): 3779.

doi: 10.1039/C8TC05360J
[50]
Hou P, Sun J W, Wang H J, Liu L, Zou L W, Chen S. Sens. Actuat. B: Chem., 2020, 304: 127244.

doi: 10.1016/j.snb.2019.127244
[51]
Chen J, Ma Q, Hu X Y, Gao Y J, Yan X Y, Qin D D, Lu X Q. Sens. Actuat. B: Chem., 2018, 254: 475.

doi: 10.1016/j.snb.2017.07.125
[52]
Hu L L, Wei X, Meng J, Wang X Y, Chen X W, Wang J H. Sens. Actuat. B: Chem., 2018, 268: 264.

doi: 10.1016/j.snb.2018.04.114
[53]
Zheng Z M, Huyan Y C, Li H J, Sun S G, Xu Y Q. Sens. Actuat. B: Chem., 2019, 301: 127065.

doi: 10.1016/j.snb.2019.127065
[54]
Sheng Z, Chen L G. Anal. Bioanal. Chem., 2017, 409(26): 6081.

doi: 10.1007/s00216-017-0541-1 pmid: 28799001
[55]
Amouzegar Z, Afkhami A, Madrakian T. Microchimica Acta, 2019, 186(3): 205.

doi: 10.1007/s00604-019-3310-3
[56]
Sun J L, Liu F, Yu W Q, Jiang Q Y, Hu J L, Liu Y H, Wang F A, Liu X Q. Nanoscale, 2019, 11(11): 5014.

doi: 10.1039/C8NR09801H
[57]
Yang R, Guo X F, Jia L H, Zhang Y. Microchimica Acta, 2017, 184(4): 1143.

doi: 10.1007/s00604-017-2076-8
[58]
Pan J H, Zheng Z Y, Yang J Y, Wu Y Y, Lu F S, Chen Y W, Gao W H. Talanta, 2017, 166: 1.

doi: 10.1016/j.talanta.2017.01.033
[59]
Huang T, Song X, Cai M, Zhang D, Duan L. Mater Today Energy, 2021, 21: 100705.
[60]
Yan F Y, Ye Q H, Xu J X, He J J, Chen L, Zhou X G. Sens. Actuat. B: Chem., 2017, 251: 753.

doi: 10.1016/j.snb.2017.05.050
[61]
Wu D, Li G L, Chen X F, Qiu N N, Shi X X, Chen G, Sun Z W, You J M, Wu Y N. Microchimica Acta, 2017, 184(7): 1923.

doi: 10.1007/s00604-017-2187-2
[62]
Jia R N, Jin K F, Zhang J M, Zheng X J, Wang S, Zhang J. Sens. Actuat. B: Chem., 2020, 321: 128506.

doi: 10.1016/j.snb.2020.128506
[63]
Wang J P, Wang X Y, Pan X H, Pan W, Li Y, Liang X Y, Sun X B. Microchimica Acta, 2020, 187(6): 330.

doi: 10.1007/s00604-020-04311-w
[64]
Li L, Shi L, Jia J, Eltayeb O, Lu W, Tang Y, Dong C, Shuang S. ACS Appl. Mater. Inter., 2020, 12 (16): 18250.

doi: 10.1021/acsami.0c00283
[65]
Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L. Microchim Acta, 2019, 186 (2): 113.

doi: 10.1007/s00604-018-3221-8
[66]
Wang Q, Li L F, Wang X D, Dong C, Shuang S M. Talanta, 2020, 219: 121180.

doi: 10.1016/j.talanta.2020.121180
[67]
Guo Y X, Zhang X D, Wu F G. J. Colloid Interface Sci., 2018, 530: 511.

doi: 10.1016/j.jcis.2018.06.041
[68]
Li Q J, Sun A N, Si Y S, Chen M, Wu L M. Chem. Mater., 2017, 29(16): 6758.

doi: 10.1021/acs.chemmater.7b01649
[69]
Li J F, Huang P C, Wu F Y. Sens. Actuat. B: Chem., 2017, 240: 553.

doi: 10.1016/j.snb.2016.09.018
[70]
Ji D Y, Meng H M, Ge J, Zhang L, Wang H Q, Bai D M, Li J J, Qu L B, Li Z H. Microchimica Acta, 2017, 184(9): 3325.

doi: 10.1007/s00604-017-2343-8
[71]
Yao C P, Wang J, Zheng A X, Wu L J, Zhang X L, Liu X L. Sens. Actuat. B: Chem., 2017, 252: 30.

doi: 10.1016/j.snb.2017.05.136
[72]
Zhang X B, Kong R M, Tan Q Q, Qu F, Qu F L. Talanta, 2017, 169: 1.

doi: 10.1016/j.talanta.2017.03.050
[73]
Fu L, Du Y L, Zhang Z X, Sun H Y, Zheng A X, Liu X L. Microchimica Acta, 2019, 186(8): 491.

doi: 10.1007/s00604-019-3590-7
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[8] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[9] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[10] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[11] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[12] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[13] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[14] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[15] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.