中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 594-603 DOI: 10.7536/PC190819 Previous Articles   Next Articles

• Review •

Fluorescent Organic Small Molecule Based on Biotin and Their Applications

Jidong Zhang1,**(), Achen Liu1, Jiao Chen2, Guanghui Yuan1, Huafeng Jin1   

  1. 1.Department of Chemistry and Chemical Engineering, Research Centre of New Materials, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Ankang Univerisity, Ankang 725000, China
    2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
  • Received: Revised: Online: Published:
  • Contact: Jidong Zhang
  • About author:
  • Supported by:
    Key Projects of Shaanxi Provincial Science & Technology Department(2018PT-31); Youth Foundation of Shaanxi Provincial Science & Technology Department(2019JQ-504); Natural Science Foundation of Shaanxi Province(2019JM-229); Doctor’s Initial Funding of Ankang University(2018AYQDZR06); Key Laboratory of Se-Enriched Products Development and Quality control, Ministry of Agriculture(Se-2018B02)
Richhtml ( 45 ) PDF ( 2545 ) Cited
Export

EndNote

Ris

BibTeX

Biotin is a water-soluble vitamin and serves as a coenzyme for carboxylases in human body. It is widely favored by chemists and biologists in recent years. In addition, it exhibits low toxicity in various physiological and pathological processes, and can be designed as a selectivity targeting drug carriers, which can efficiently deliver therapeutic drugs to cells. Nowadays, small molecules containing biotin have developed into a class of biofunctional molecules of high utility value. These compounds have the advantages of simple synthesis, easy functionalization, and high specificity. In this paper, the progress of biotin and its derivatives in biosensors, drug release and other fields are systematically reviewed, and the prospects for their development are presented.

Contents

1 Introduction

2 Fluorescent probe based on biotin structure

3 Targeted diagnostic and therapeutic molecular system based on biotin structure

4 Other biomolecules containing based on biotin structure

5 Conclusion

Fig. 1 Synthesis route of fluorescent probe 1 based on biotin[19]
Fig. 2 Schematic sensing mechanism of the fluorescent probe 2 toward thiols[20]
Fig. 3 Synthesis procedure of fluorescent probe 3[22]
Fig. 4 The proposed sensing mechanism of fluorescent probe 4 with FA[23]
Fig. 5 Proposed response mechanism of fluorescent probe 5 to pH[24]
Fig. 6 Proposed response mechanism of fluorescent probe 6 to H2S[25]
Fig. 7 Proposed sensing mechanism of fluorescent probe 7 to Zn(Ⅱ)[26]
Fig. 8 The chemical structure of fluorescent molecular 8, 9, 10 and 11 based on biotin[27,28]
Fig. 9 Reaction mechanism of 12 with GSH under physiological conditions[29]
Fig. 10 The chemical structure of prodrug 13[30]
Fig. 11 The chemical structure of theranostic prodrug 14[31]
Fig. 12 Reaction mechanism of 15 with thiols under physiological conditions[32]
Fig. 13 The reaction mechanism of chemical structure 16 with intracellular GSH[33]
Fig. 14 The chemical structure of prodrug 17 and inllustration of interactions in tumor cells[34]
Fig. 15 The chemical structure of prodrug 18[35]
Fig. 16 The synthesis procedure of compound 19[36]
Fig. 17 Chemical structures of compounds 20 and 21[37]
Fig. 18 Illustration of the tumor- and organelle targeted theranostic strategy and the structure of photothermal agent 22[38]
Fig. 19 Chemical structures of probe 23(A); illustration interaction of the ternary complex(B)[39]
Fig. 20 The chemical structure of biotin derivatives 24(A); illustrations of the biotin-binding pocket(B)[40]
Fig. 21 Chemical structures of compounds 25 and 26[41]
Fig. 22 Chemical structures of Am580-biotin conjugates 27 and 28[42]
Fig. 23 Biotin Gd-DOTA complexes 29 and 30[43]
Fig. 24 Chemical structures of the biotin-conjugated metal complexes 31 and 32[44]
[1]
Chan J, Dodani S C, Chang C J. Nat. Chem., 2012,4(12):973. http://dx.doi.org/10.1038/NCHEM.1500

doi: 10.1038/NCHEM.1500
[2]
Xu Z, Kim S K, Yoon J. Chem. Soc. Rev., 2010,39(5):1457. http://xlink.rsc.org/?DOI=b918937h

doi: 10.1039/b918937h
[3]
Gao M, Yu F, Lv C, Choo J, Chen L. Chem. Soc. Rev., 2017,46(8):2237. http://xlink.rsc.org/?DOI=C6CS00908E

doi: 10.1039/C6CS00908E
[4]
Liu H W, Chen L, Xu C, Li Z, Zhang H, Zhang X B, Tan W. Chem. Soc. Rev., 2018,47(18):7140.
[5]
Li X, Guo X, Cao L, Xun Z, Wang S, Li S, Li Y, Yang G. Angew. Chem. Int. Ed., 2014,53(30):7809.
[6]
Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. J. Am. Chem. Soc., 2017,139(8):3181.
[7]
Wu X, Sun X, Guo Z, Tang J, Shen Y, James T D, Tian H, Zhu W. J. Am. Chem. Soc., 2014,136(9):3579.
[8]
Shcherbakova E G, Zhang B, Gozem S, Minami T, Zavalij P Y, Pushina M, Isaacs L D, Anzenbacher P. J. Am. Chem. Soc., 2017,139(42):14954.
[9]
Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat. Chem., 2017,9(3):279.
[10]
You L, Zha D, Anslyn E V. Chem. Rev., 2015,115(15):7840.
[11]
Bruen D, Delaney C, Diamond D, Florea L. ACS Appl. Mater. Interfaces, 2018,10(44):38431.
[12]
Zempleni J, Wijeratne S S, Hassan Y I. Biofactors., 2009,35(1):36.
[13]
Ren W X, Han J, Uhm S, Jang Y J, Kang C, Kim J H, Kim J S. Chem. Commun., 2015,51(52):10403.
[14]
Scarborough J H, Brusoski K, Brewer S, Rodich S, Chatley K S, Nguyen T, Green K N. Organometallics, 2015,34(5):918. https://pubs.acs.org/doi/10.1021/om501294f

doi: 10.1021/om501294f
[15]
Yan C, Guo Z, Shen Y, Chen Y, Tian H, Zhu W H. Chem. Sci., 2018,9(22):4959. http://xlink.rsc.org/?DOI=C8SC01069B

doi: 10.1039/C8SC01069B
[16]
Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin R M, Yin C. Chem. Soc. Rev., 2019,48(15):4155. http://xlink.rsc.org/?DOI=C8CS01006D

doi: 10.1039/C8CS01006D
[17]
Mei J, Huang Y, Tian H. ACS Appl. Mater. Interfaces, 2018,10(15):12217. https://pubs.acs.org/doi/10.1021/acsami.7b14343

doi: 10.1021/acsami.7b14343
[18]
Razgulin A, Ma N, Rao J. Chem. Soc. Rev., 2011,40(7):4186. http://xlink.rsc.org/?DOI=c1cs15035a

doi: 10.1039/c1cs15035a
[19]
He Q, Fan X, Sun S, Li H, Pei Y, Xu Y Q. RSC Adv., 2015,5:38571. http://xlink.rsc.org/?DOI=C5RA07185B

doi: 10.1039/C5RA07185B
[20]
Sun Q, Sun D, Song L, Chen Z, Chen Z, Zhang W, Qian J. Anal. Chem., 2016,88(6):3400. https://pubs.acs.org/doi/10.1021/acs.analchem.6b00178

doi: 10.1021/acs.analchem.6b00178
[21]
Yuan L, Lin W, Zheng K, He L, Huang W. Chem. Soc. Rev., 2013,42(2):622. http://xlink.rsc.org/?DOI=C2CS35313J

doi: 10.1039/C2CS35313J
[22]
Yang J, Li K, Hou J T, Li L L, Lu C Y, Xie Y M, Wang X, Yu X Q. ACS Sensors, 2016,1(2):166. https://pubs.acs.org/doi/10.1021/acssensors.5b00165

doi: 10.1021/acssensors.5b00165
[23]
Lee Y H, Tang Y, Verwilst P, Lin W, Kim J S. Chem. Commun., 2016,52(75):11247. http://xlink.rsc.org/?DOI=C6CC06158C

doi: 10.1039/C6CC06158C
[24]
Dong B, Song X, Kong X, Wang C, Zhang N, Lin W Y. J. Mater. Chem. B, 2017,5(5):988. http://xlink.rsc.org/?DOI=C6TB02957D

doi: 10.1039/C6TB02957D
[25]
Song X, Dong B, Kong X, Wang C, Zhang N, Lin W Y. RSC Adv., 2017,7(26):15817. http://xlink.rsc.org/?DOI=C7RA01479A

doi: 10.1039/C7RA01479A
[26]
Fang L, Trigiante G, Kousseff C J, Crespo-Otero R, Philpott M P, Watkinson M. Chem. Commun., 2018,54(69):9619. http://xlink.rsc.org/?DOI=C8CC05425H

doi: 10.1039/C8CC05425H
[27]
Chen S, Zhao X, Chen J, Chen J, Kuznetsova L, Wong S S, Ojima I. Bioconjugate Chem., 2010,21:979. https://pubs.acs.org/doi/10.1021/bc9005656

doi: 10.1021/bc9005656
[28]
Vineberg J G, Zuniga E S, Kamath A, Chen Y J, Seitz J D, Ojima I. J. Med. Chem., 2014,57(13):5777. https://pubs.acs.org/doi/10.1021/jm500631u

doi: 10.1021/jm500631u
[29]
Maiti S, Park N, Han J H, Jeon H M, Lee J H, Bhuniya S, Kang C, Kim J S. J. Am. Chem. Soc., 2013,135(11):4567. https://pubs.acs.org/doi/10.1021/ja401350x

doi: 10.1021/ja401350x
[30]
Bhuniya S, Maiti S, Kim E J, Lee H, Sessler J L, Hong K S, Kim J S. Angew. Chem., 2014,53(17):4469. http://doi.wiley.com/10.1002/anie.201311133

doi: 10.1002/anie.201311133
[31]
Kumar R, Han J, Lim H J, Ren W X, Lim J Y, Kim J H, Kim J S. J. Am. Chem. Soc., 2014,136(51):17836. http://dx.doi.org/10.1021/ja510421q

doi: 10.1021/ja510421q
[32]
Jung D, Maiti S, Lee J H, Lee J H, Kim J S. Chem. Commun., 2014,50(23):3044. http://xlink.rsc.org/?DOI=c3cc49790a

doi: 10.1039/c3cc49790a
[33]
Kim T, Jeon H M, Le H T, Kim T W, Kang C, Kim J S. Chem. Commun., 2014,50(57):7690. http://xlink.rsc.org/?DOI=c4cc02878c

doi: 10.1039/c4cc02878c
[34]
Park S, Kim E, Kim W Y, Kang C, Kim J S. Chem. Commun., 2015,51(45):9343. http://xlink.rsc.org/?DOI=C5CC03003J

doi: 10.1039/C5CC03003J
[35]
Bhuniya S, Lee M H, Jeon H M, Han J H, Lee J H, Park N, Maiti S, Kang C, Kim J S. Chem. Commun., 2013,49:7141. http://xlink.rsc.org/?DOI=c3cc42653j

doi: 10.1039/c3cc42653j
[36]
Arvin-Berod M, Desroches-Castan A, Bonte S, Brugiere S, Coute Y, Guyon L, Feige J J, Baussanne I, Demeunynck M. ACS Omega, 2017,2(12):9221. https://pubs.acs.org/doi/10.1021/acsomega.7b01184

doi: 10.1021/acsomega.7b01184
[37]
Cao L, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem. Int. Ed., 2013,52(46):12033. http://doi.wiley.com/10.1002/anie.201305061

doi: 10.1002/anie.201305061
[38]
Wang H, Chang J, Shi M, Pan W, Li N, Tang B. Angew. Chem. Int. Ed., 2019,58(4):1057. https://onlinelibrary.wiley.com/toc/15213773/58/4

doi: 10.1002/anie.v58.4
[39]
Ohtsuka K, Sato S, Sato Y, Sota K, Ohzawa S, Matsuda T, Takemoto K, Takamune N, Juskowiak B, Nagai T, Takenaka S. Chem. Commun., 2012,48(39):4740. http://xlink.rsc.org/?DOI=c2cc30536d

doi: 10.1039/c2cc30536d
[40]
Ying L Q, Branchaud B P. Chem. Commun., 2011,47(30):8593. http://xlink.rsc.org/?DOI=c1cc12738a

doi: 10.1039/c1cc12738a
[41]
Vibhute S M, Engelmann J, Verbić T,Maier M E, Logothetis N K, Angelovski G. Org. Biomol. Chem., 2013,11(8):1294. http://xlink.rsc.org/?DOI=C2OB26555A

doi: 10.1039/C2OB26555A
[42]
Fujii S, Mori S, Kagechika H, Mendoza Parra M A, Gronemeyer H. Bioorg. Med. Chem. Lett., 2018,28(14):2442. https://linkinghub.elsevier.com/retrieve/pii/S0960894X18304979

doi: 10.1016/j.bmcl.2018.06.011
[43]
Germeroth A I, Hanna J R, Karim R, Kundel F, Lowther J, Neate P G, Blackburn E A, Wear M A, Campopiano D J, Hulme A N. Org. Biomol. Chem., 2013,11(44):7700. http://xlink.rsc.org/?DOI=c3ob41837e

doi: 10.1039/c3ob41837e
[44]
Kallus S, Uhlik L, Schoonhoven S, Pelivan K, Berger W, Enyedy E A, Hofmann T, Heffeter P, Kowol C R, Keppler B K. J. Inorg. Biochem., 2019,190:85. https://linkinghub.elsevier.com/retrieve/pii/S0162013418303507

doi: 10.1016/j.jinorgbio.2018.10.006
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[5] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[6] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[11] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[12] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[13] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[14] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[15] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.