中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1917-1929 DOI: 10.7536/PC200325 Previous Articles   Next Articles

• Review •

Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3

Xiaohan Wang1,2, Caixia Liu1, Chunfeng Song1, Degang Ma1, Zhenguo Li3, Qingling Liu1,2,**()   

  1. 1 Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
    2 Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
    3 National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, China
  • Received: Revised: Online: Published:
  • Contact: Qingling Liu
  • Supported by:
    the Tianjin Research Program of Application Foundation and Advanced Technique(No. 16JCQNJC05400); the Tianjin Research Program of Application Foundation and Advanced Technique(15JCQNJC08500); the National Engineering Laboratory for Mobile Source Emission Control Technology of China(No. NELMS2017A03); the National Natural Science Foundation of China(No. 21503144); the National Natural Science Foundation of China(21690083); and Tianjin Research Program of Ecological Environmental Treatment(No. 18ZXSZSF00210); and Tianjin Research Program of Ecological Environmental Treatment(18ZXSZSF00060)
Richhtml ( 39 ) PDF ( 952 ) Cited
Export

EndNote

Ris

BibTeX

Nitrogen oxides(NO x ) are one of the main pollutants causing atmospheric pollution. Nitrogen oxides emitted from fixed sources such as industrial furnaces and coal-fired power plants and mobile sources such as motor vehicles have caused a series of damage to the ecological environment. Controlling and reducing NO x emission is a very difficult task at present. In the past decades, metal-organic frameworks(MOFs) have shown prominent heterogeneous catalytic activity due to their multiple active sites, large BET surface area, structural diversity and easy functionalization. These characteristics have attracted more and more attention to MOFs catalyst materials in the field of low-temperature industrial denitration in recent years. This review summarizes the application progress of MOFs materials in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia. This review focuses on the application of MOFs materials of single and hybrid metals and the study of MOFs-derived composite catalysts. Finally, the current problems of MOFs in the field of low-temperature denitrification are proposed, and the development directions and prospects are prospected.

Contents

1 Introduction

2 Synthesis and classification of MOFs and derivatives

3 Application of MOFs for low-temperature NH3-SCR

3.1 Single metal MOF-SCR

3.2 Hybrid MOFs-SCR

3.3 MOF derivatives-SCR

4 Conclusions and Perspective

Table 1 Activity of various MOFs as NH3-SCR catalysts
Catalyst Reaction condition Catalytic performance ref
Cu-BTC(pre-treated at 230 ℃) [NO]=500 ppm, [O2]=5 vol%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=30 000 h-1 Max conversion: 100%
(220~280 ℃)
46
Cu-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min, GHSV=50 000 h -1 Max NO conversion: 97.8%(230 ℃); 100% N 2 selectivity(230 ℃) 47
Mn-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min Max conversion: 99%
(220 ℃)
48
P123-Mn-MOF-74 [NO]=500 ppm, [O2]=5 vol%, [NH3]=500 ppm, Ar as balance gas, 5 vol% H2O(when used), total gas flow rate=100 mL/min Max conversion: 92.1%
(250 ℃)
49
Co-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min Max conversion: 70%
(210 ℃)
48
Co/Mn-MOF-74 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, Ar as balance gas, [SO2]=100 ppm(when used), 5 vol% H2O(when used), total gas flow rate=100 mL/min, GHSV=50 000 h-1 Max conversion: 99%(200 ℃)
180~240 ℃
50
MIL-100(Fe) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 100%
(260 ℃)
44
MIL-100(Fe-Mn) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 96%
(260 ℃)
51
IM-CeO 2/MIL-100(Fe) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, [SO 2]=500 ppm(when used), 5 vol% H2O(when used), GHSV=30 000 h-1 Max conversion: 100%
196~300 ℃
52
Mn-Ce/UiO-67 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=450 mL/min, GHSV=45 000 h-1 Max conversion: 98%
(200~300 ℃)
53
Mn/Cu 3(BTC) 2 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 100%
230~260 ℃
54
Ag/Cu 3(BTC) 2 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=30 000 h-1 Max conversion: 100%
200~260 ℃
55
Ni-MOF(pre-treated at 230 ℃) [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=15 000 h-1 Max conversion: 92%(275 ℃)
275~440 ℃
56
Cu+/Ni-MOF [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=15 000 h-1 Max conversion: 95%
200~300 ℃
56
MnO x/MIL-125(Ti) [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, [SO 2]=200 ppm(when used), 5 vol% H2O(when used), GHSV=30 000 h-1 Max conversion: 100%
175~425 ℃
57
MnO x/UiO-66 [NO]=500 ppm, [O2]=5%, [NH3]=500ppm, Ar as balance gas, [SO2]=100 ppm(when used), 5 vol% H2O(when used), total flow rate=100 mL/min, GHSV=50 000 h-1 Max conversion: 99%
125~250 ℃
58
Ce 10/Zr-CAU-24 [NO]=500 ppm, [O2]=10%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=150 mL/min. Max conversion: 88%(210 ℃) 59
Fig.1 MOF-SCR reaction activity. (a)NO conversions for various Cu-BTC samples pre-treated at different temperatures[46]. Copyright 2016, Taylor & Francis Group, LLC.(b)The stability tests of SCR reaction at 250 ℃ over MIL-100(Fe)[10]. Copyright the Royal Society of Chemistry 2014.(c)SCR activity of used Mn-MOF-74 at 220 ℃[48]. Copyright 2016, American Chemical Society.(d)Stability test of SCR reaction at 200 ℃ over Co-MOF-74[48]. Copyright 2016, American Chemical Society.(e)Low-temperature selective catalytic reduction(SCR) activities of P123-Mn-MOF-74, PVP-Mn-MOF-74, and Mn-MOF-74-CH[49]. Copyright 2019, the authors.(f)Stability test results of Mn-MOF-74, P123-Mn-MOF-74, PVP-Mn-MOF-74, and Mn-MOF-74-CH 3 under an SCR-H 2O atmosphere at their own optimal conditions[49]. Copyright 2019, the authors
Fig.2 The SEM images of Cu-MOF-199 samples modified by acetic acid: (a)10%-AA,(b)20%-AA,(c)25%-AA[68]. Copyright 2016, Tianjin University (a)10%-AA,(b) 20%-AA,(c) 25%-AA[68]
Fig.3 NO conversion efficiency (a) and N 2 selectivity(b) of Cu-BTC and Mn/Cu-BTC-X catalysts as a function of temperatures[54]. Copyright 2019, Elsevier
Fig.4 Fe-Mn bimetal action mechanism[51]. Copyright Springer Science+Business Media New York 2016
Fig.5 (a)NO x conversions over MIL-100(Fe-Mn), MIL-100(Fe) and MIL-100(Mn);(b) The stability tests without SO 2 and H 2O(A/C/E) and stability tests with SO 2and H 2O(B/D/F) of SCR reaction over MIL-100(Fe-Mn) at 280/260/240 ℃[51]. Copyright Springer Science+Business Media New York 2016
Fig.6 (a)The NO conversion of Mn@CeMOF and MnCe@MOF;(b)The effect of SO 2 and H 2O on NO conversion over MnCe@MOF[52]. Copyright 2015, Elsevier
Fig.7 (a)The low-temperature SCR performance of Mn/Co-MOF-74 samples; (b)Stability test of SCR reaction at 200 ℃ for Mn 0.66Co 0.34-MOF-74[50]. Copyright 2018, Elsevier
Fig.8 Reaction mechanism of MnO x /MIL-125(Ti)[57].Copyright 2019, Elsevier
Fig.9 Mechanism of Active Components Supporting MnO x /SEP Catalyst: (a)DP;(b)IM;(c)CPM[72]. Copyright 2019, Elsevier
Fig.10 Reaction mechanism of CuO/Cu 2O[77]. Copyright 2019, Elsevier
Table 2 Activity of MOFs derivatives as NH3-SCR catalysts
Catalyst Reaction condition Catalytic performance ref
MnO x from Mn-MOF-74 template [NO]=500 ppm, [O 2]=5%, [NH 3]=500 ppm, N 2as balance gas, total gas flow rate=450 mL/min, GHSV=45 000 h -1 Max conversion: 98%
(220 ℃)
75
Co 3O 4/PC from ZIF-67 [NO x ]=[NH 3]=500 ppm, [O 2]=5 vol%, [SO 2]=60 ppm(when used), [H 2O]=5 vol%(when used), Ar balance, total gas flow rate=300 mL/min, GHSV=14 000 h -1 Max conversion: 90%
150~175 ℃
76
CuO/Cu 2O from Cu-MOF template [NO]=1000 ppm, [O 2]=3%, [NH 3]=1000 ppm, Ar as balance gas, total gas flow rate=200 mL/min, GHSV=40 000 h -1 Max conversion: 100%
170~220 ℃
77
MnO x from Mn-CP
template
[NO]=400 ppm, [O 2]=3%, [NH 3]=400 ppm, N 2 as balance gas, total gas flow rate=1000 mL/min, GHSV=15 000 h -1 Max conversion: 91.3%
100~200 ℃
78
Mn 3O 4@G-A from Mn-BTC-SA [NO]=[NH 3]=600 ppm, [O 2]=5 vol%, [SO 2]=50 ppm(when used), [H 2O]=5.6 vol%(when used), N 2as balance gas, GHSV=60 000 h -1 Max conversion: 100%
140~290 ℃
79
Fe 2O 3-2S from MIL-100(Fe) [NO]=[NH 3]=1000 ppm, [O 2]=4 vol%, [SO 2]=500 ppm(when used), [H 2O]=8 vol%(when used), N 2 as balance gas, GHSV=30,000 h -1 Max conversion: 100%
250~325 ℃
80
MnO x -FeO x nanoneedles from Mn/Fe-MOF [NO]=500 ppm, [O 2]=5%, [NH 3]=500 ppm, N 2as balance gas, total gas flow rate=600 mL/min, GHSV=36 000 h -1 Max conversion: 100%
120~240 ℃
81
CuO/Cu 3(BTC) 2 [NO]=[NH 3]=600 ppm, [O 2]=4 vol%, [SO 2]=150 ppm(when used), [H 2O]=4 vol%(when used), N 2 as balance gas, GHSV=60 000 h -1 Max conversion: 95%
180~240 ℃
82
Fig.11 (a)NO x conversion efficiency of the catalysts and(b)the stability test of MnO x -350 at 150 ℃[78]. Copyright the Royal Society of Chemistry, 2019
Fig.12 Preparation and performance test of MnOx-FeOx[81]. Copyright American Chemical Society, 2017
Fig.13 (a)NO x conversion at different temperatures over Fe 2O 3-1S, Fe 2O 3-2S and VTiC catalysts;(b)Effect of SO 2 and H 2O on the activity and stability of Fe 2O 3-2S catalyst[80]. Copyright 2019, Elsevier
Fig.14 (a)NO conversion during SCR deNOx process;(b)The effect of SO 2 on low-temperature SCR performance over Mn 3O 4-A and Mn 3O 4@G-A[79]. Copyright 2020, Elsevier
Fig.15 The preparation of CuO@Cu 3(BTC) 2 core-shell materials[82]. Copyright American Chemical Society, 2017
Fig.16 CuO@Cu 3(BTC) 2 (a)NO x conversion of each sample and (b) H 2O and SO 2 tolerance of CuO@Cu 3(BTC) 2 at 200 ℃[82]. Copyright American Chemical Society, 2017
[1]
Qi G , Yang R T , Chang R . Applied Catalysis B: Environmental, 2004, 51: 93.
[2]
Yu Z , Lei D , Thorjornlarssen L , Lan H H , Ji M H . Policy Analysis, 2007, 41: 1815.
[3]
Qi G , Yang R T . Applied Catalysis B: Environmental, 2003, 44: 217.
[4]
Mauzerall D , Sultan B , Kim N , Bradford D . Atmospheric Environment, 2005, 39: 2851.
[5]
黄诗坚( Huang S J ). 电力环境保护( Electric Power Environmental Protection), 2004, 20: 24.
[6]
China’s National Climate Change Programme, 2007. 7.
[7]
Liu F , Shan W , Lian Z , Xie L , Yang W , He H . Catalysis Science & Technology, 2013, 3: 2699.
[8]
Zhang M , Gu K , Huang X , Chen Y . Phys. Chem. Chem. Phys., 2019, 21: 19226.
[9]
邹斯诣( Zhou S Z ). 节能技术( Energy Conservation Technology), 2009, 6( 27): 510.
[10]
Wang P , Zhao H , Sun H , Yu H , Chen S , Quan X . RSC Adv., 2014, 4: 48912.
[11]
Gongshin Q , Ralph T Y . J. Phys. Chem. B, 2004, 108: 15738.
[12]
Sjoerd K W , Danny S B , Eduard K P , Alfred B . Journal of Catalysis, 1997, 171: 208.
[13]
Sjoerd K W , Danny S B , Hendrik I S , Eduard K P , Alfred B . Journal of Catalysis, 1997, 171: 219.
[14]
Marbán G , ValdÉs-Solís T , Fuertes A B . Phys. Chem. Chem. Phys., 2004, 6: 453.
[15]
Marban G. Journal of Catalysis, 2004, 226: 138.
[16]
Eigenmann F , Maciejewski M , Baiker A . Applied Catalysis B: Environmental, 2006, 62: 311.
[17]
Stolle R , Koeser H , Gutberlet H . Applied Catalysis B: Environmental, 2014, 144: 486.
[18]
Geotrey C B. J. Chem. Tech. Biotechnol., 1997, 68: 6.
[19]
Mo`nica C , Christian M . J. Phys. Chem. B, 2004, 108: 15679.
[20]
Zhang X , Li X , Wu J , Yang R , Zhang Z . Catalysis Letters, 2009, 130: 235.
[21]
Jiang H L , Xu Q . Chemical Communications, 2011, 47: 3351.
[22]
Mitsuru K , Tomomichi Y , Kenji S , Hiroyuki M , Susumu K . Angew. Chem. Int. Ed. EngI., 1997, 36: 16.
[23]
Liu F , Xu H . Talanta, 2017, 162: 261.
[24]
Fernández-Catalá J , Casco M E , Martínez-Escandell M , Rodríguez-Reinoso F , Silvestre-Albero J . Microporous and Mesoporous Materials, 2017, 237: 74.
[25]
Jiang H , Wang Q , Wang H , Chen Y , Zhang M . Catalysis Communications, 2016, 80: 24.
[26]
Zhang M , Huang X , Chen Y . Phys. Chem. Chem. Phys., 2016, 18: 28854.
[27]
刘宏利( Liu H L ). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2013.
[28]
Bernard F H , Richard R . J. Am. Chem. Soc., 1989, 111: 5962.
[29]
Ying W L , Ralph T Y . J. Am. Chem. Soc., 2006, 128: 726.
[30]
Christian S , Franck M , Christelle T , Marc N , Ge'rard M , Daniel L , Ge'rard F . J. Am. Chem. Soc., 2002, 124: 13519.
[31]
Sheng Q M , Dao F S , Jason M S , Christopher D C , Da Q Y , Hong C Z . J. Am. Chem. Soc., 2008, 130: 1012.
[32]
Wang B , CôtÉ A P , Furukawa H , O’Keeffe M , Yaghi O M . Nature, 2008, 453: 207.
[33]
Mitsuru K , Takashi O , Akiko A , Shin-ichiro N , Tomomici Y , Susumu K , Tomohiko I , Hiroyuki M , Kenji S . Angew. Chem. Int. Ed., 1999, 38: 140.
[34]
Jasmina H C , Søren J , Unni O , Nathalie G , Carlo L , Silvia B , Karl P L . J. Am. Chem. Soc., 2008, 130: 13850.
[35]
Su Z , Fan J , Okamura T A , Sun W Y , Ueyama N . Crystal Growth & Design, 2010, 10: 3515.
[36]
Joshua A T , Catherine R B , Nicholas A B , Megan E L , Ryan P L , Christopher W J , Sankar N . Chem. Mater., 2012, 24: 1930.
[37]
Pei Z , Feng Q , Zhen H , Chao S , Wei S , Hua L X . Chemical Engineering Journal, 2018, 349: 72.
[38]
Zhong Y Y , Bao L S . J. Mater. Chem., 2006, 16: 663.
[39]
Parlett C M , Wilson K , Lee A F . Chem. Soc. Rev., 2013, 42: 3876.
[40]
Yang X Y , Chen L H , Li Y , Rooke J C , Sanchez C , Su B L . Chem. Soc. Rev., 2017, 46: 481.
[41]
Min C L , Wen X W , Ming Y Y , Fu C L , Lu J C , You G T , Rong S , Zhou G L . RSC Adv., 2015, 5: 7356.
[42]
Zhou H C , Long J R , Yaghi O M . Chemical Reviews, 2012, 112: 673.
[43]
Howarth A J , Peters A W , Vermeulen N A , Wang T C , Hupp J T , Farha O K . Chemistry of Materials, 2017, 29: 26.
[44]
Ou S , Wu C D . Inorg. Chem. Front., 2014, 1: 721.
[45]
Zhou H C , Kitagawa S . Chem Soc Rev, 2014, 43: 673.
[46]
Li C , Shi Y , Zhang H , Zhao Q , Xue F , Li X . Integrated Ferroelectrics, 2016, 172: 169.
[47]
Jiang H , Zhou J , Wang C , Li Y , Chen Y , Zhang M . Industrial & Engineering Chemistry Research, 2017, 56: 3542.
[48]
Jiang H , Wang Q , Wang H , Chen Y , Zhang M . ACS Appl . Mater. Interfaces, 2016, 8: 26817.
[49]
Wang S , Gao Q , Dong X , Wang Q , Niu Y , Chen Y , Jiang H . Catalysts, 2019, 9: 1004.
[50]
Jiang H , Niu Y , Wang Q , Chen Y , Zhang M . Catalysis Communications, 2018, 113: 46.
[51]
Zhang W , Shi Y , Li C , Zhao Q , Li X . Catalysis Letters, 2016, 146: 1956.
[52]
Wang P , Sun H , Quan X , Chen S . J. Hazard. Mater., 2016, 301: 512.
[53]
Zhang X , Shen B X , Zhang X Q , Wang F M , Chi G L , Si M . RSC Adv., 2017, 7: 5928.
[54]
Yao Z , Qu D , Guo Y , Yang Y , Huang H . Advances in Materials Science and Engineering, 2019, 2019: 2935942.
[55]
石勇( Shi Y ), 牛丹阳( Niu D Y ), 武卓敏( Wu Z M ), 刘震震( Liu Z Z ), 肇启东( Zhao Q D ), 熊巍( Xiong W ), 李新勇( Li X Y ). 中国环境科学( China Environmental Science), 2018, 38: 2445.
[56]
Sun X , Shi Y , Zhang W , Li C , Zhao Q , Gao J , Li X . Catalysis Communications, 2018, 114: 104.
[57]
Sun H , Liu Z , Wang Y , Quan X , Zhao G . J. Hazard. Mater., 2019, 380: 120800.
[58]
Zhang M , Huang B , Jiang H , Chen Y . Frontiers of Chemical Science and Engineering, 2017, 11: 594.
[59]
Smolders S , Jacobsen J , Stock N , De Vos D . Catalysis Science & Technology, 2020, 10: 337.
[60]
Arnǒst Z , Maksym O , Miroslav R , Petr N , Jacek J . Catalysis Today, 2015, 243: 69.
[61]
Xiao F W , Zong B B , Bin Y , Jun W , Ying Q S , Hong M L , Shu G D . Microporous and Mesoporous Materials, 2013, 180: 114.
[62]
Sun W , Lin L C , Peng X , Smit B . AIChE Journal, 2014, 60: 2314.
[63]
Jiang H , Wang S , Wang C , Chen Y , Zhang M . Catalysis Surveys from Asia, 2018, 22: 95.
[64]
de Oliveira A, de Lima G F, De Abreu H A. Chemical Physics Letters, 2018, 691: 283.
[65]
Yu R , Zhao Z , Shi C , Zhang W . Journal of Physical Chemistry C, 2019, 123: 2217.
[66]
魏亚娟( Wei Y J ). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2017.
[67]
Zhang M , Wang W , Chen Y . Phys. Chem. Chem. Phys., 2018, 20: 2211.
[68]
王彩霞( Wang C X ). 天津大学硕士论文(Master Dissertation of Tianjin University), 2016.
[69]
Panagiotis G S , Pavani M S , Donovan A P , Robert G J . Ind. Eng. Chem. Res., 2006, 45: 6436.
[70]
Park E , Kim M , Jung H , Chin S , Jurng J . ACS Catalysis, 2013, 3: 1518.
[71]
Panagiotis G S , Donovan A P , Balu S U . Angew. Chem. Int. Ed., 2001, 40: 2479.
[72]
Zhang X , Wu Q , Diao Q , Wang J , Xiao K , Yang B , Wu X . Chemical Engineering Journal, 2019, 370: 364.
[73]
Zhang L , Huang L , Qin Y H , Chen B Z . Transactions of Nonferrous Metals Society of China, 2018, 28: 980.
[74]
Chen X , Chen X , Yu E , Cai S , Jia H , Chen J , Liang P . Chemical Engineering Journal, 2018, 344: 469.
[75]
Jiang H , Wang C , Wang H , Zhang M . Materials Letters, 2016, 168: 17.
[76]
Bai Y , Dong J , Hou Y , Guo Y , Liu Y , Li Y , Han X , Huang Z . Chemical Engineering Journal, 2019, 361: 703.
[77]
Wang Q , Xu H , Huang W , Pan Z , Zhou H . J. Hazard. Mater., 2019, 364: 499.
[78]
Ji B , Lee J , Kwak S Y . Dalton Trans., 2019, 48: 16395.
[79]
Liu Z , Wang M , Liu S , Chen Z , Yang L , Sun K , Chen Y , Zeng L , Wang W , Zhao J , Sun G , Liu B , Pan Y , Liu Y , Liu C . Applied Catalysis B: Environmental, 2020, 269: 118731.
[80]
Gong Z , Niu S L , Zhang Y J , Lu C M . Materials Research Bulletin, 2020, 123: 110693.
[81]
Fan Z , Shi J W , Gao C , Gao G , Wang B , Niu C . ACS Appl . Mater. Interfaces, 2017, 9: 16117.
[82]
Yu Y , Chen C , He C , Miao J , Chen J . ChemCatChem, 2019, 11: 979.
[83]
Liu B , Shioyama H , Akita T , Xu Q . J. Am. Chem. Soc., 2008, 130: 5390.
[84]
Tang J , Salunkhe R R , Liu J , Torad N L , Imura M , Furukawa S , Yamauchi Y . J. Am. Chem. Soc., 2015, 137: 1572.
[85]
Hui J , Chu H , Zhang W , Shen Y , Chen W , Hu Y , Liu W , Gao C , Guo S , Xiao G , Li S , Fu Y , Fan D , Zhang W , Huo F . Nanoscale, 2018, 10: 8772.
[86]
Zhou Y X , Chen Y Z , Cao L , Lu J , Jiang H L . Chem. Commun.(Camb), 2015, 51: 8292.
[87]
Wang X , Zhong W , Li Y . Catalysis Science & Technology, 2015, 5: 1014.
[88]
Guan B Y , Yu X Y , Wu H B , Lou X W D . Adv. Mater., 2017, 29: 1703614.
[89]
Zhang Y , Park S J . Applied Catalysis B: Environmental, 2019, 240: 92.
[90]
张艳梅( Zhang Y M ), 张静( Zhang J ), 田苗苗( Tian M M ), 储刚( Chu G ), 权春善( Quan C S ). 催化学报( Chinese Journal of Catalysis), 2016, 37: 420.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[6] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[7] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[8] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[9] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[10] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[11] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[12] Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan. π Complexation Adsorbents Based on Porous Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(6): 628-636.
[13] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[14] Li Panpan, Yu Feng, Zhu Mingyuan, Tang Changjin, Dai Bin, Dong Lin. Selective Catalytic Reduction De-NOx Catalysts [J]. Progress in Chemistry, 2016, 28(10): 1578-1590.
[15] Jiang Ning, Deng Zhiyong, Wang Gongying, Liu Shaoying. Preparation of Metal-Organic Frameworks and Application for CO2 Adsorption and Separation [J]. Progress in Chemistry, 2014, 26(10): 1645-1654.