中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 783-790 DOI: 10.7536/PC181029   Next Articles

Nanoscale Metal Organic Frameworks for Drug Delivery

Xinyi Lai, Zhiyong Wang**(), Yongtai Zheng, Yongming Chen**()   

  1. School of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Online: Published:
  • Contact: Zhiyong Wang, Yongming Chen
  • About author:
    ** E-mail: (Zhiyong Wang);
  • Supported by:
    National Natural Science Foundation of China(51503230); National Natural Science Foundation of China(81471778); National Natural Science Foundation of China(51203177); Guangdong Innovative and Entrepreneurial Research Team Program(2013S086); Science and Technology Program of Guangzhou,China(201804010101)
Richhtml ( 48 ) PDF ( 1114 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks(MOFs), a class of self-assembled porous materials with metal ions and organic ligands, have attracted increasing research attention owing to their high porosity, tunable pore size, large surface area and multiple structures. In recent years, MOFs have been extensively investigated in gas storage, separation, catalysis and other fields. When the size of these hybrid materials drops down to nanosized scale, the regular morphology and unique properties make NMOFs become promising candidates for drug delivery. Compared to other nanocarriers, NMOFs provide multiple binding sites for a variety of small-molecule drugs and biomacromolecule via inclusion or surface conjugation. These chemical modifications do not affect NMOFs' intrinsic physicochemical properties. Moreover, the facile synthesis and mild preparation conditions endow NMOFs with advantages in biomedicine. Nowadays, NMOFs have been demonstrated with multifunctionalities and stimuli-responsive controlled release in vivo. Therefore, a detailed review of the application of NMOFs in controlled drug delivery of anticancer drugs, photosensitizer and nucleic acids is provided here.

Fig. 1 Schematic showing the general procedure for the NMOF with lipid and PEG coating[20].Copyright 2014, the Royal Society of Chemistry
Fig. 2 The synthesis of PDA-PCM@ZIF-8/DOX and controllable combined thermo-chemotherapy.(a) Controlled DOX release behaviors of the PDA-PCM@ZIF-8/DOX at different pH under NIR irradiation.(b) Controlled DOX release behaviors of the PDA@ZIF-8/DOX and PDA-PCM@ZIF-8/DOX at same pH under 37 ℃ shaking with additional 5 min NIR irradiation or not[23]. Copyright 2018, Elsevier
Fig. 3 Illustration of PCN-224 structure.(a) six-connected Zr6 cluster(Zr6O4(OH)4(H2O)6(OH)6(COO)6), tetratopic linker(tetrakis(4-carboxyphenyl)porphyrin(H2TCPP)), and 3D nanoporous framework of PCN-224.(b) A cubic unit of PCN-224 and schematic illustration of spherical PCN-224 nanoparticles on the basis of construction of cubic units, yielding different sizes.(c) Control experiments of cytotoxicity in HeLa cells upon light irradiation of 420 and 630 nm in the absence and presence of 90 nm-PCN-224. Irradiation time=30 min.(d) Comparison of in vitro PDT efficacy of pristine 1/4FA-PCN-224and PCN-224 in HeLa cells[30]. Copyright 2016, American Chemical Society
Fig. 4 (A) Schematic illustration for preparation of O2@UiO-66@ICG@RBC.(B) Schematic illustration of NIR-triggered O2 releasing and enhanced PDT mechanism[32]. Copyright 2018, Elsevier
Fig. 5 Mechanism of the reversal of drug resistance and induced apoptosis by the disruption of microtubule in MCF-7/T(Taxol-Resistance) Cancer Cells[39]. Copyright 2017, American Chemical Society
Fig. 6 Synthesis and DNA Functionalization of UiO-66-N3 Nanoparticles.(A) Synthesis of UiO-66-N3(Zr6O4OH4(C8H3O4-N3)6) nano-particles.(B) DNA functionalization of UiO-66-N3 nanoparticles, utilizing DNA functionalized with DBCO.(C) Strain promoted click reaction between a MOF strut and DNA. Zirconium atoms=blue; oxygen atoms=red; carbon atoms=black; azide groups=green. Hydrogen atoms are omitted for clarity[43]. Copyright 2014, American Chemical Society
Fig. 7 Fine-tuning of interactions between ssDNA and MOFs.(a) Illustration of ssDNA inclusion in MOFs composed of bio-compatible organic linkers and with precisely controlled pore sizes.(b) Gradual increase of interaction between ssDNA and MOFs as the pore size of MOF extended progressively. Relatively mild interactions guarantee the uptake and protection of ssDNA in the MOF pores, and also provide reversibility for their release[44]. Copyright 2018, Nature Publishing Group
[1]
Della R J, Liu D, Lin W . J. Shanghai Norm. Univ., 2012,44(10):957.
[2]
Yaghi O M, Li H, Davis C, Richardson D, Groy T L . Acc. Chem. Res., 1998,31(8):474.
[3]
Li H, Eddaoudi M, O’Keeffe M, Yaghi O M . Nature, 1999,402(6759):276.
[4]
Furukawa H, Yaghi O M . ChemInform, 2013,44(45):974.
[5]
Chen B, Xiang S, Qian G . Acc. Chem. Res., 2010,43(8):1115. https://www.ncbi.nlm.nih.gov/pubmed/20450174

doi: 10.1021/ar100023y pmid: 20450174
[6]
Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C Y . Chem. Soc. Rev., 2014,43(16):6011. https://www.ncbi.nlm.nih.gov/pubmed/24871268

doi: 10.1039/c4cs00094c pmid: 24871268
[7]
Wang C, Liu D, Lin W . J. Am. Chem. Soc., 2013,135(36):13222. https://www.ncbi.nlm.nih.gov/pubmed/23944646

doi: 10.1021/ja308229p pmid: 23944646
[8]
Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G . Angew. Chem.-Int. Ed., 2006,45(36):5974.
[9]
Davis M E, Chen Z, Shin D M . Nat. Rev. Drug Discov., 2008,7(9):771. https://www.ncbi.nlm.nih.gov/pubmed/18758474

doi: 10.1038/nrd2614 pmid: 18758474
[10]
Taylor-Pashow K M L, Della Rocca J, Xie Z, Tran S, Lin W . J. Am. Chem. Soc., 2009,131(40):14261. https://www.ncbi.nlm.nih.gov/pubmed/19807179

doi: 10.1021/ja906198y pmid: 19807179
[11]
Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z . Biomaterials, 2016,97 1. https://www.ncbi.nlm.nih.gov/pubmed/27155362

doi: 10.1016/j.biomaterials.2016.04.034 pmid: 27155362
[12]
Lu K, He C, Lin W . J. Am. Chem. Soc., 2014,136(48):16712. https://www.ncbi.nlm.nih.gov/pubmed/25407895

doi: 10.1021/ja508679h pmid: 25407895
[13]
Zhang L, Lei J, Ma F, Ling P, Liu J, Ju H . Chem. Commun., 2015,51(54):10831. https://www.ncbi.nlm.nih.gov/pubmed/26051476

doi: 10.1039/c5cc03028e pmid: 26051476
[14]
García-Uriostegui L, Meléndez-Ortiz H I, Toriz G, Delgado E . Mater. Lett., 2017,196 26.
[15]
Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y . J. Am. Chem. Soc., 2015,137(26):8352. https://www.ncbi.nlm.nih.gov/pubmed/26099722

doi: 10.1021/jacs.5b04147 pmid: 26099722
[16]
Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris R E, Serre C . Chem. Rev., 2012,112(2):1232. https://www.ncbi.nlm.nih.gov/pubmed/22168547

doi: 10.1021/cr200256v pmid: 22168547
[17]
Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto M J, Horcajada P . J. Mater. Chem. B, 2014,2(3):262. https://www.ncbi.nlm.nih.gov/pubmed/32261505

doi: 10.1039/c3tb20832j pmid: 32261505
[18]
Rieter W J, Pott K M, Taylor K M L, Lin W .J. Am. Chem. Soc., 2008,130(35):11584.
[19]
Filippousi M, Turner S, Leus K, Siafaka P I, Tseligka E D, Vandichel M, Nanaki S G, Vizirianakis I S, Bikiaris D N, Van Der Voort P, Van Tendeloo G . Int. J. Pharm., 2016,509(1):208.
[20]
Liu D, He C, Poon C, Lin W . J. Mater. Chem. B, 2014,2(46):8249. https://www.ncbi.nlm.nih.gov/pubmed/32262098

doi: 10.1039/c4tb00751d pmid: 32262098
[21]
Ganta S, Devalapally H, Shahiwala A, Amiji M . J. Controlled Release, 2008,126(3):187. https://linkinghub.elsevier.com/retrieve/pii/S0168365908000254

doi: 10.1016/j.jconrel.2007.12.017
[22]
Shenoy D, Little S, Langer R, Amiji M . Pharm. Res., 2005,22(12):2107. https://www.ncbi.nlm.nih.gov/pubmed/16254763

doi: 10.1007/s11095-005-8343-0 pmid: 16254763
[23]
Wu Q, Niu M, Chen X, Tan L, Fu C, Ren X, Ren J, Li L, Xu K, Zhong H, Meng X . Biomaterials, 2018,162:132. https://www.ncbi.nlm.nih.gov/pubmed/29448141

doi: 10.1016/j.biomaterials.2018.02.022 pmid: 29448141
[24]
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström A M, Zou X . J. Am. Chem. Soc., 2016,138(3):962. https://www.ncbi.nlm.nih.gov/pubmed/26710234

doi: 10.1021/jacs.5b11720 pmid: 26710234
[25]
Dong K, Wang Z, Zhang Y, Ren J, Qu X . ACS Appl. Mater. Interfaces, 2018,10(38):31998.
[26]
Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson B C, Golab J . CA. Cancer J. Clin., 2011,61(4):250. https://www.ncbi.nlm.nih.gov/pubmed/21617154

doi: 10.3322/caac.20114 pmid: 21617154
[27]
Bechet D, Couleaud P, Frochot C, Viriot M L, Guillemin F, Barberi-Heyob M . Trends Biotechnol., 2008,26(11):612. https://www.ncbi.nlm.nih.gov/pubmed/18804298

doi: 10.1016/j.tibtech.2008.07.007 pmid: 18804298
[28]
Lu K, He C, Lin W . J. Am. Chem. Soc., 2015,137(24):7600. https://www.ncbi.nlm.nih.gov/pubmed/26068094

doi: 10.1021/jacs.5b04069 pmid: 26068094
[29]
Sykes E A, Chen J, Zheng G, Chan W C W . ACS Nano, 2014,8(6):5696. https://www.ncbi.nlm.nih.gov/pubmed/24821383

doi: 10.1021/nn500299p pmid: 24821383
[30]
Park J, Jiang Q, Feng D, Mao L, Zhou H C . J. Am. Chem. Soc., 2016,138(10):3518. https://www.ncbi.nlm.nih.gov/pubmed/26894555

doi: 10.1021/jacs.6b00007 pmid: 26894555
[31]
Allison R R, Sibata C H . Photodiagnosis Photodyn. Ther., 2010,7(2):61. https://www.ncbi.nlm.nih.gov/pubmed/20510301

doi: 10.1016/j.pdpdt.2010.02.001 pmid: 20510301
[32]
Gao S, Zheng P, Li Z, Feng X, Yan W, Chen S, Guo W, Liu D, Yang X, Wang S, Liang X J, Zhang J . Biomaterials, 2018,178:83. https://www.ncbi.nlm.nih.gov/pubmed/29913389

doi: 10.1016/j.biomaterials.2018.06.007 pmid: 29913389
[33]
Cheng H, Zhu J Y, Li S Y, Zeng J Y, Lei Q, Chen K W, Zhang C, Zhang X Z . Adv. Funct. Mater., 2016,26(43):7847.
[34]
Juliano R L . Nucleic Acids Res., 2016,44(14):6518. https://www.ncbi.nlm.nih.gov/pubmed/27084936

doi: 10.1093/nar/gkw236 pmid: 27084936
[35]
Dowdy S F . Nat. Biotechnol., 2017,35(3):222. https://www.ncbi.nlm.nih.gov/pubmed/28244992

doi: 10.1038/nbt.3802 pmid: 28244992
[36]
Panyam J, Labhasetwar V . Adv. Drug Deliv. Rev., 2003,55(3):329. https://www.ncbi.nlm.nih.gov/pubmed/12628320

doi: 10.1016/s0169-409x(02)00228-4 pmid: 12628320
[37]
An J, Geib S J, Rosi N L . J. Am. Chem. Soc., 2009,131(24):8376. https://www.ncbi.nlm.nih.gov/pubmed/19489551

doi: 10.1021/ja902972w pmid: 19489551
[38]
He C, Lu K, Liu D, Lin W . J. Am. Chem. Soc., 2014,136(14):5181. https://www.ncbi.nlm.nih.gov/pubmed/24669930

doi: 10.1021/ja4098862 pmid: 24669930
[39]
Chen Q, Xu M, Zheng W, Xu T, Deng H, Liu J . ACS Appl. Mater. Interfaces, 2017,9(8):6712. https://pubs.acs.org/doi/10.1021/acsami.6b12792

doi: 10.1021/acsami.6b12792
[40]
Wang H, Zhang J, Yu H . Free Radic. Biol. Med., 2007,42(10):1524. https://www.ncbi.nlm.nih.gov/pubmed/17448899

doi: 10.1016/j.freeradbiomed.2007.02.013 pmid: 17448899
[41]
Bergamo A, Gaiddon C, Schellens J H M, Beijnen J H, Sava G .J. Inorg. Biochem., 2012,106(1):90.
[42]
Wang S, McGuirk C M, Ross M B, Wang S, Chen P, Xing H, Liu Y, Mirkin C A .J. Am. Chem. Soc., 2017,139(29):9827.
[43]
Morris W, Briley W E, Auyeung E, Cabezas M D, Mirkin C A . J. Am. Chem. Soc., 2014,136(20):7261. https://www.ncbi.nlm.nih.gov/pubmed/24818877

doi: 10.1021/ja503215w pmid: 24818877
[44]
Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, Xia Y, Tang H, Deng H, Zhou X . Nat. Commun., 2018,9(1):1293. https://www.ncbi.nlm.nih.gov/pubmed/29615605

doi: 10.1038/s41467-018-03650-w pmid: 29615605
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[6] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[9] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[12] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[13] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[14] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[15] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.