中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 497-504 DOI: 10.7536/PC190816 Previous Articles   

Application of Metal-Organic Framework Materials in Enrichment of Active Peptides

Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen*()   

  1. College of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received: Revised: Online: Published:
  • Contact: Maolong Chen
  • Supported by:
    The work was supported by the National Key Research and Development Project of China(2018YFD0400405); the Hunan Natural Science Foundation Project(2019JJ50638)
Richhtml ( 37 ) PDF ( 731 ) Cited
Export

EndNote

Ris

BibTeX

Bioactive peptides play an important role in physiological processes. Accurate analysis of bioactive peptides will help to further develop their efficacy. Due to the bioactive peptides often coexisting with high concentrations of proteins, it is still quite difficult to analyze peptides in complex biological systems. These coexisted proteins may severely reduce the separation efficiency of chromatographic column for bioactive peptides and inhibit the peak signal of the peptide in the mass spectrum. In view of this, metal-organic frameworks are introduced to perform enrichment analysis of active peptides. Metal-organic frameworks(MOFs) is a type of framework self-assembled by coordination bonds between metal ions or metal clusters and organic ligands to form organic-inorganic hybrid materials with porous structure. Due to their adjustable frame structure, high porosity, good chemical stability, reproducibility, and simple synthesis process, they are widely used in active peptides enrichment, gas adsorption and separation, the areas of sensors, drug delivery and catalytic reactions. In this paper, the research progress of MOF materials as active peptide enrichment materials such as phosphopeptides, glycopeptides and endogenous peptides in recent years is reviewed, and the shortcomings and outlook of MOFs materials in this area are pointed out.

Contents

1 Introduction

2 MOFs for endogenous peptide enrichment

3 MOFs for glycopeptide enrichment

4 MOFs for phosphopeptide enrichment

5 Conclusion and outlook

Table 1 Comparison of MOFs for endogenous peptide enrichment in recent years
Fig. 1 The synthesis route of Fe3O4-COOH@MIL-101 composites and the flowchart of fast and convenient enrichment of biomarkers from cell lysates using Fe3O4-COOH@MIL-101 composites[27]
Table 2 Comparison of MOFs for glycopeptide enrichment in recent years
Fig. 2 Synthesis route of MIL-101(NH2)@Au-Cys (a) and the enrichment procedure of glycopeptides (b)[42]
Fig. 3 Synthesis of MG@Zn-MOFs biocomposites and method for selective enrichment of glycopeptides by MG@Zn-MOFs[46]
Table 3 Comparison of MOFs for phosphopeptide enrichment in recent years
Fig. 4 Schematic representation of the synthesis and phosphopeptide enrichment of the SPMA nanospheres[53]
Fig. 5 Synthesis of Fe3O4@PDA@Zr-Ti-MOF and workflow for enrichment of phosphopeptides from biological samples[63]
[1]
Li Y W , Li B , He J , Qian P . Journal of Molecular Structure, 2011,998:53. 26e71678-5333-4d21-a6f0-3ec9331e7575 http://dx.doi.org/10.1016/j.molstruc.2011.05.011

doi: 10.1016/j.molstruc.2011.05.011
[2]
庞广昌(Pang G C), 陈庆森(Chen Q S) . 食品科学(Food Science), 1999,20:25. 3d5b02c3-26af-4dff-bb4a-956bd2530f73 http://www.spkx.net.cn//CN/abstract/abstract21352.shtml
[3]
田建明(Tian J M), 韦康(Wei K), 陈英红(Chen Y H), 罗浩铭(Luo H M), 王颖(Wang Y), 姜瑞芝(Jiang R Z), 张晓荧(Zhang X Y) . 中国新药杂志(Chinese New Drug Journal), 2018,27:1658.
[4]
唐婷(Tang T), 马力(Ma L) . 中国食物与营养(Chinese food and nutrition), 2008,9:28. 83548cd8-e1a9-4383-8a7f-39558d3748df http://d.wanfangdata.com.cn/Periodical_zgswyyy200809008.aspx
[5]
于文皓(Yu W H), 祁艳霞(Qi Y X), 靳艳(Jin Y) . 色谱(Chromatography), 2019,37:471.
[6]
Chertov O , Biragyn A , Kwak L W , Simpson J T , Boronina T , Hoang V M , Prieto D A , Conrads T P , Veenstra T D , Fisher R J . Proteomics, 2004,4:1195.
[7]
Greening D W , Simpson R J . Journal of Proteomics, 2010,73:637.
[8]
Herraiz T , Casal V . Journal of Chromatography A, 1995,708:209.
[9]
Qin H , Gao P , Wang F , Zhao L , Zhu J , Wang A , Zhang T , Wu R A , Zou H . Angewandte Chemie-International Edition, 2011,50:12218.
[10]
Tian R , Zhang H , Ye M , Jiang X , Hu L , Li X , Bao X , Zou H . Angewandte Chemie-International Edition, 2007,46:962.
[11]
Qing G , Lu Q , Xiong Y , Zhang L , Wang H , Li X , Liang X , Sun T . Advanced Materials, 2017,29:1.
[12]
Wen Y , Chen L , Li J , Liu D , Chen L . Trac-Trends in Analytical Chemistry, 2014,59:26.
[13]
Tian J , Xu J , Zhu F , Lu T , Su C , Ouyang G . Journal of Chromatography A, 2013,1300:2. 53fcd8c2-9840-4f25-ac74-025b1314dfec http://dx.doi.org/10.1016/j.chroma.2013.04.010

doi: 10.1016/j.chroma.2013.04.010
[14]
Lin G , Gao C , Zheng Q , Lei Z , Geng H , Lin Z , Yang H , Cai Z . Chemical Communications, 2017,53:3649.
[15]
Zhu X , Gu J , Yang J , Wang Z , Li Y , Zhao L , Zhao W , Shi J . Journal of Materials Chemistry B, 2015,3:4242.
[16]
Li J , Liu J , Liu Z , Tan Y , Liu X , Wang F . Analytical Chemistry, 2017,89:4339.
[17]
蔡建锋(Cai J F) . 浙江大学硕士学位论文(Master Dissertation of Zhejiang University), 2015.
[18]
He Y , Zhou W , Qian G , Chen B . Chemical Society Reviews, 2014,43:5657.
[19]
Li J R , Sculley J , Zhou H C . Chemical Reviews, 2012,112:869.
[20]
Zhang T , Lin W . Chemical Society Reviews, 2014,43:5982.
[21]
Liu J , Chen L , Cui H , Zhang J , Zhang L , Su C Y . Chemical Society Reviews, 2014,43:6011. http://xlink.rsc.org/?DOI=C4CS00094C

doi: 10.1039/C4CS00094C
[22]
张光耀(Zhang G Y) . 南京理工大学硕士学位论文(Master Dissertation of Nanjing University of Science and Technology), 2017.
[23]
Horcajada P , Gref R , Baati T , Allan P K , Maurin G , Couvreur P , Ferey G , Morris R E , Serre C . Chemical Reviews, 2012,112:1232. 5b58c4c9-326b-4c0f-92a6-c7fab9483a93 http://dx.doi.org/10.1021/cr200256v

doi: 10.1021/cr200256v
[24]
龙星宇(Long X Y), 吴迪(Wu D), 龚小见(Gong X J), 邓琴(Deng Q), 杨珍(Yang Z), 付荗(Fu M) . 贵州师范大学学报(Journal of Guizhou Normal University), 2017,35:104.
[25]
Peng J , Wu R . Anal Chim Acta, 2018,1027:9.
[26]
Gu Z Y , Chen Y J , Jiang J Q , Yan X P . Chemical Communications, 2011,47:4787.
[27]
Wei J P , Qiao B , Song W J , Chen T , Li F , Li B Z , Wang J , Han Y , Huang Y F , Zhou Z J . Analytica Chimica Acta, 2015,868:36.
[28]
Xiong Z , Ji Y , Fang C , Zhang Q , Zhang L , Ye M , Zhang W , Zou H . Chemistry- A European Journal, 2014,20:7389.
[29]
Zhao M , Deng C , Zhang X , Yang P . Proteomics, 2013,13:3387.
[30]
Wei J P , Wang H , Luo T , Zhou Z J , Huang Y F , Qiao B . Analytical and Bioanalytical Chemistry, 2017,409:1895.
[31]
Zhao M , Xie Y , Chen H , Deng C . Talanta, 2017,167:392.
[32]
Cheng G , Wang Z G , Denagamage S , Zheng S Y . ACS Applied Materials & Interfaces, 2016,8:10234.
[33]
Zhao Y M , Zhang Q Q , Zhang L Y , Zhang W B . Talanta, 2019,200:443.
[34]
Marino K , Bones J , Kattla J J , Rudd P M . Nature Chemical Biology, 2010,6:713. https://doi.org/10.1038/nchembio.437

doi: 10.1038/nchembio.437
[35]
Sun S , Shah P , Eshghi S T , Yang W , Trikannad N , Yang S , Chen L , Aiyetan P , Hoti N , Zhang Z , Chan D W , Zhang H . Nature Biotechnology, 2016,34:84.
[36]
Gaunitz S , Nagy G , Pohl N L B, Noyotny M V. Analytical Chemistry, 2017,89:389.
[37]
Li J , Wang F , Wan H , Liu J , Liu Z , Cheng K , Zou H . Journal of Chromatography A, 2015,1425:213.
[38]
Li J , Wang J , Ling Y , Chen Z , Gao M , Zhang X , Zhou Y . Chemical Communications, 2017,53:4018.
[39]
Ji Y , Xiong Z , Huang G , Liu J , Zhang Z , Liu Z , Ou J , Ye M , Zou H . Analyst, 2014,139:4987.
[40]
Zhang Y W , Li Z , Zhao Q , Zhou Y L , Liu H W , Zhang X X . Chemical Communications, 2014,50:11504.
[41]
Ma W , Xu L , Li Z , Sun Y , Bai Y , Liu H . Nanoscale, 2016,8:10908.
[42]
Ma W , Xu L , Li X , Shen S , Wu M , Bai Y , Liu H . ACS Applied Materials & Interfaces, 2017,9:19562.
[43]
Wang Y , Wang J , Gao M , Zhang X . Proteomics, 2017,17:1.
[44]
Liu Q , Xie Y , Deng C , Lie Y . Talanta, 2017,175:477.
[45]
Xie Y , Deng C , Li Y . Journal of Chromatography A, 2017,1508:1.
[46]
Wang J , Li J , Wang Y , Gao M , Zhang X , Yang P . ACS Applied Materials & Interfaces, 2016,8:27482.
[47]
Xie Y , Deng C . Scientific Reports, 2017,7:1162.
[48]
Peng J , Hu Y , Zhang H , Wan L , Wang L , Liang Z , Zhang L , Wei R A . Analytical Chemistry, 2019,91:4852.
[49]
Sun N , Wang J , Yao J , Deng C . Analytical Chemistry, 2017,89:1764.
[50]
Zolnierowicz S , Bollen M . The EMBO journal, 2000,19:483. http://emboj.embopress.org/cgi/doi/10.1093/emboj/19.4.483

doi: 10.1093/emboj/19.4.483
[51]
Ptacek J , Devgan G , Michaud G , Zhu H , Zhu X , Fasolo J , Guo H , Jona G , Breitkreutz A , Sopko R , McCartney R R , Schmidt M C , Rachidi N , Lee S J , Mah A S , Meng L , Stark M J R , Stern D F , de Virgilio C , Tyers M , Andrews B , Gerstein M , Schweitzer B , Predki P F , Snyder M . Nature, 2005,438:679.
[52]
Olsen J V , Blagoev B , Gnad F , Macek B , Kumar C , Mortensen P , Mann M . Cell, 2006,127:635.
[53]
Luo B , Yang M , Jiang P , Lan F , Wu Y . Nanoscale, 2018,10:8391.
[54]
Yang X , Xia Y . Microchimica Acta, 2016,183:2235.
[55]
Peng J , Zhang H , Li X , Liu S , Zhao X , Wu J , Kang X , Qin H , Pan Z , Wu R . ACS Applied Materials & Interfaces, 2016,8:35012.
[56]
Chen Y , Xiong Z , Peng L , Gan Y , Zhao Y , Shen J , Qian J , Zhang L , Zhang W . ACS Applied Materials & Interfaces, 2015,7:16338.
[57]
Zhao M , Deng C , Zhang X . Chemical Communications, 2014,50:6228.
[58]
Xie Y , Deng C . Talanta, 2016,159:1.
[59]
Han G , Zeng Q , Jiang Z , Deng W , Huang C , Li Y . Talanta, 2017,171:283.
[60]
Zhao M , Zhang X , Deng C . RSC Advances, 2015,5:35361.
[61]
Zhao M , Chen T , Deng C . RSC Advances, 2016,6:51670.
[62]
Wu Y , Liu Q , Deng C . Analytica Chimica Acta, 2019,1061:110.
[63]
Liu Q , Sun N , Gao M , Deng C H . ACS Sustainable Chemistry & Engineering, 2018,6:4382.
[64]
Li D , Bie Z . RSC Advances, 2017,7:15894.
[65]
Cao L , Zhao Y , Chu Z , Zhang X , Zhang W . Talanta, 2020,206:120165. https://linkinghub.elsevier.com/retrieve/pii/S003991401930791X

doi: 10.1016/j.talanta.2019.120165
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[5] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[6] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[7] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[8] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[9] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[10] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[11] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[12] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[13] Zihan Lin, Huang Chen, Jiawei Dong, Daohui Zhao, Libo Li. Nanopore-Based Biomolecular Detection [J]. Progress in Chemistry, 2020, 32(5): 562-580.
[14] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[15] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.