中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1578-1590 DOI: 10.7536/PC160350 Previous Articles   

Selective Catalytic Reduction De-NOx Catalysts

Li Panpan1, Yu Feng1,3,4, Zhu Mingyuan1, Tang Changjin2,5, Dai Bin1*, Dong Lin2,5*   

  1. 1. Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
    2. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi 832003, China;
    4. Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi 832003, China;
    5. Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High Technology Research and Development Program of China (863 program) (No. 2015AA03A401), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46) and the Program of Science and Technology Innovation Team in Bingtuan (No. 2015BD003).
PDF ( 1605 ) Cited
Export

EndNote

Ris

BibTeX

Nitrogen oxides (NOx) in flue gases is an important source of air pollution. It is urgent to remove the NOx from flue gases. In this review, the removal ways of nitrogen oxides are reviewed in terms of high-temperature and low-temperature selective catalytic reduction (SCR) De-NOx catalysts. We discuss the high-temperature SCR De-NOx catalysts including vanadium-based catalysts, iron-based catalysts and molecular sieve-based catalysts. Then, we highlight the low-temperature SCR De-NOx catalysts such as noble metal-based catalysts, manganese-based catalyst, carbon-based catalysts, etc. We specifically focus on the mechanism studies of SCR De-NOx catalysts. Finally, we summarize the recent advances in denitrification.

Contents
1 Introduction
2 Process arrangement of SCR denitrification
3 SCR catalysts
3.1 High-temperature catalysts
3.2 Low-temperature catalysts
4 Conclusion

CLC Number: 

[1] Yao X, Xiong Y, Zou W, Zhang L, Wu S, Dong X, Gao F, Deng Y, Tang C, Chen Z. Applied Catalysis B Environmental, 2014, 144(1):152.
[2] Boyano A, Iritia M C, Malpartida I, Larrubia M A, Alemany L J, Moliner R, Lázaro M J. Catal. Today, 2008, 137(2/4):222.
[3] Bosch H, Janssen F. Catalysis Today, 1988, 2(4):369.
[4] Liu C, Shi J W, Gao C, Niu C. Applied Catalysis A General, 2016, 522:54.
[5] Tang C, Zhang H, Dong L. Catalysis Science & Technology, 2015, 6(5):21.
[6] 吴忠标(Wu Z B). 大气污染控制技术(Air Pollution Contral Technology), 北京:化学工业出版社(Beijing:Chemical Industry Press), 2002.
[7] Busca G, Lietti L, Ramis G, Berti F. Applied Catalysis B Environmental, 1998, 18(18):1.
[8] Nakatsuji T, Miyamoto A. Catalysis Today, 1991, 10(1):21.
[9] Busca G, Lietti L, Ramis G, Berti F. Applied Catalysis B Environmental, 1998, 18(s 1/2):1.
[10] Bosch H. J F. Catalysis Today, 1988, 2(4):369.
[11] Koebel M, Elsener M A, Madia G. Industrial & Engineering Chemistry Research, 2001, 40(1):52.
[12] Koebel M, Madia G, Raimondi F, Wokaun A. Journal of Catalysis, 2002, 209(1):159.
[13] Koebel M, Madia G, Elsener M. Catalysis Today, 2002, 73(3/4):239.
[14] Assessment A D. Office of Scientific & Technical Information Technical Reports, (2001-10-01).. http://www.osti.gov/scitech/biblio/787755-1lb3Yz/native/
[15] Haddad E, Ralston J, Green G, Castagnero S. Proceedings of the EPA-EPRI-NETL-AWMA Combined Power Plant Air Pollutant Control Mega Symposium. 2003. 19.
[16] Chung L, Huang H S. Challenges of Power Engineering and Environment., 2006:710.
[17] Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, Yoshikawa M, Yasutake A. Carbon, 2000, 38(2):227.
[18] Moreno-Castilla C, Carrasco-Mar?N F, López-Ramón M V, Alvarez-Merino M A. Carbon, 2001, 39(9):1415.
[19] Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K. Fuel Processing Technology, 2007, 88(8):817.
[20] Wang Z, Zhou J, Jianren Fan A, Cen K. Energy & Fuels, 2006, 20(6):2432.
[21] Basfar A A, Fageeha O I, Kunnummal N, Al-Ghamdi S, Chmielewski A G, Licki J, Pawelec A, Tymiński B, Zimek Z. Fuel, 2008, 87(8/9):1446.
[22] 锺兰狄(Zhong L D). 电力科技与环保(Electric Power Technology and Environmental Protection), 2007, 23(3):1.
[23] Zhao Y, Xue F M, Shao Y. Applied Mechanics & Materials, 2013, 316/317:214.
[24] Gao X, Wu Z, Luo Z, Ni M, Cen K. Engineering Science, 2010, 8(1):27.
[25] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Applied Catalysis B Environmental, 1999, 22(1):63.
[26] Choo S T, Yim S D, Nam I S, Ham S W, Lee J B. Applied Catalysis B Environmental, 2003, 44(3):237.
[27] Shen M, Li C, Wang J, Xu L, Wang W, Wang J. Rsc Advances, 2015, 5:35155.
[28] Pârvulescu V I, Boghosian S, Jung S M, Grange P. Journal of Catalysis, 2003, 217(1):172.
[29] Macleod N, Lambert R M. Catalysis Letters, 2003, 90(3/4):111.
[30] Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P. Applied Catalysis B Environmental, 2013, 142/143(10):705.
[31] Huang H F, Jin L L, Lu H F, Yu H, Chen Y J. Catalysis Communications, 2013, 34:1.
[32] Phil H H, Reddy M P, Kumar P A, Ju L K, Hyo J S. Applied Catalysis B Environmental, 2008, 78(s 3/4):301.
[33] Topsoe N Y. Science, 1994, 265(5176):1217.
[34] Akira Miyamoto, Kan Kobayashi, Makoto Inomata, Yuichi Murakami. Journal of Physical Chemistry, 1982, 86(15):2945.
[35] Pârvulescu V I, Grange P, Delmon B. Catalysis Today, 1998, 46(4):233.
[36] Ozkan U S, Cai Y, Kumthekar M W. Journal of Catalysis, 1994, 149(2):390.
[37] Ozkan U S, Cai Y, Kumthekar M W, Zhang L. Cheminform, 1993, 24(44):182.
[38] Inomata M, Miyamoto A, Murakami Y. Journal of Catalysis, 1980, 62(1):140.
[39] Yin X, Han H, Gunji I, Endou A, Ammal S S C, Momoji Kubo A, Miyamoto A. J. Phys. Chem. B, 1999, 103(22):4701.
[40] Davydov A A. Russian Chemical Bulletin, 1994, 43(2):214.
[41] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. Journal of Catalysis, 1977, 50(3):441.
[42] Went G T, Leu L J, Rosin R R, Bell A T. Cheminform, 1992, 134(2):492.
[43] Odriozola J A, Heinemann H, Somorjai G A, Banda J F G D L, Pereira P. Journal of Catalysis, 1989, 119(1):71.
[44] Topsoe N Y. Science, 1994, 265(5176):1217.
[45] 贺泓(He H), 刘福东(Liu F D), 余运波(Yu Y B), 单文坡(Shan W P). 中国科学:化学(Scientia Sinica China), 2012, (4):446.
[46] Brandenberger S, Kröcher O, Althoff A T, Roderik. Catalysis Reviews, 2008, 50(4):492.
[47] Kato A, Matsuda S, Kamo T, Nakajima F, Kuroda H, Narita T. Journal of Physical Chemistry, 1981, 85(26):276
[48] Foo R, Vazhnova T, Lukyanov D B, Millington P, Collier J, Rajaram R, Golunski S. Applied Catalysis B Environmental, 2015, 162:174.
[49] Liu F, Hong H, Zhang C, Shan W, Shi X. Catalysis Today, 2011, 175(1):18.
[50] Liu F, He H. Catalysis Today, 2010, 153(s 3/4):70.
[51] Mou X, Zhang B, Li Y, Yao L, Wei X, Su D S, Shen W. Angewandte Chemie International Edition, 2012, 51(12):2989.
[52] Wu S G, Yao X J, Zhang L, Cao Y, Zou W X, Li L L, Ma K L, Tang C J, Gao F, Dong L. Chemical Communications, 2015, 51(16):3470.
[53] And R Q L, Yang R T. Journal of the American Chemical Society, 1999, 121(23):5595.
[54] Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Journal of Catalysis, 1995, 157(2):523.
[55] Larrubia M A, Ramis G, Busca G. Applied Catalysis B Environmental, 2000, 27(3):L145.
[56] Iwasaki M, Shinjoh H. Applied Catalysis A General, 2010, 390(s 1/2):71.
[57] Ellmers I, Vélez R P, Bentrup U, Schwieger W, Brückner A, Grünert W. Catalysis Today, 2015, 258:337.
[58] Qi G, Yang R T. Catalysis Letters, 2005, 100(3):243.
[59] Qi G, Yang R T. Applied Catalysis B Environmental, 2005, 60(s 1/2):13.
[60] Long R Q, Yang R T. Cheminform, 1999, 30(35):332
[61] Long R Q, Yang R T. Journal of Catalysis, 1999, 188(2):332.
[62] Delahay G, Guzmán-Vargas A, Coq B. Applied Catalysis B Environmental, 2007, 70(1):45.
[63] Krishna K, Seijger G B F, Bleek C M V D, Makkee M, Mul G, Calis H P A. Catalysis Letters, 2003, 86(1/3):121.
[64] Carja G, Delahay G, Signorile C, Coq B. Chemical Communications, 2004, 35(36):1404.
[65] Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R. Jetp Letters, 2011, 101(3):649.
[66] Brandenberger S, Kröcher O, Tissler A, Althoff R. Applied Catalysis B:Environmental, 2010, 95(s 3/4):348.
[67] Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. Journal of Catalysis, 2008, 256(2):312.
[68] Iwasaki M, Yamazaki K, Shinjoh H. Applied Catalysis B:Environmental, 2011, 102(s 1/2):302.
[69] Iwasaki M, Yamazaki K, Banno K, Shinjoh H. Journal of Catalysis, 2008, 260(2):205.
[70] Sun Q, Gao Z X, Chen H Y, Sachtler W M H. Journal of Catalysis, 2001, 201(1):89.
[71] Mauvezin M, Delahay G, Coq B, Kieger S, Jumas J C, Olivier-Fourcade J. Journal of Physical Chemistry B, 2001, 105(5):928.
[72] Høj M, Beier M J, Grunwaldt J D, Dahl S. Applied Catalysis B:Environmental, 2009, 93(1):166.
[73] Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt J D. Applied Catalysis B:Environmental, 2009, 93(1):185.
[74] Kwak J H, Tran D, Burton S D, Szanyi J, Lee J H, Peden C H F. Journal of Catalysis, 2012, 287(3):203.
[75] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Applied Catalysis B:Environmental, 2011, 102(3/4):441.
[76] Niu C, Shi X, Liu F, Liu K, Xie L, You Y, He H. Chemical Engineering Journal, 2016, 294:254.
[77] De-La-Torre U, Pereda-Ayo B, Moliner M, González-Velasco J R, Corma A. Applied Catalysis B:Environmental, 2016, 187:419.
[78] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. Journal of Catalysis, 2010, 275(2):187.
[79] Deka U, Lezcano-Gonzalez I, Warrender S J, Picone A L, Wright P A, Weckhuysen B M, Beale A M. Microporous & Mesoporous Materials, 2013, 166(166):144.
[80] Dong X, Wang J, Zhao H, Li Y. Catalysis Today, 2015, 258(2):325.
[81] Zhang L, Li L, Cao Y, Xiong Y, Wu S, Sun J, Tang C, Gao F, Dong L. Catalscitechnol, 2015, 5:2188.
[82] Zhang L, Li L, Cao Y, Yao X, Ge C, Gao F, Deng Y, Tang C, Dong L. Applied Catalysis B:Environmental, 2015, 165:589.
[83] Zhang T, Qu R, Su W, Li J. Applied Catalysis B Environmental, 2015, s 176/177:338.
[84] Liu Z, Su H, Li J, Li Y. Catalysis Communications, 2015, 65:51.
[85] Denton P, Giroirfendler A, Schuurman Y, Praliaud H, Mirodatos C, Primet M. Applied Catalysis A:General, 2001, 220(1/2):141.
[86] Macleod N, Lambert R M. Applied Catalysis B:Environmental, 2002, 35(4):269.
[87] Huang J, Tong Z, Yan H, Zhang J. Applied Catalysis B:Environmental, 2008, 78(3/4):309.
[88] Nikolopoulos A A, Stergioula E S, Efthimiadis E A, Vasalos I A. Catalysis Today, 1999, 54(4):439.
[89] Sawatmongkhon B, Tsolakis A, Sitshebo S, Rodríguez-Fernández J, Ahmadinejad M, Collier J, Rajaram R R. Applied Catalysis B:Environmental, 2010, 97(3/4):373.
[90] Zhang Z, Chen M, Zhi J, Shangguan W. Journal of Hazardous Materials, 2011, 193(2):330.
[91] Seker E, Yasyerli N, Gulari E, Lambert C, Hammerle R H. Applied Catalysis B:Environmental, 2002, 37(1):27.
[92] Kondratenko V A, Bentrup U, Richter M, Hansen T W, Kondratenko E V. Applied Catalysis B:Environmental, 2008, 84(3/4):497.
[93] Wang J, He H, Feng Q, Yu Y, Yoshida K. Catalysis Today, 2004, 93/95(1):783.
[94] Moreno-Tost R, Santamar?A-González J, Rodr?Guez-Castellón E, Jiménez-López A. Applied Catalysis B:Enironmental, 2004, 52(4):241.
[95] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts of Chemical Research, 2013, 46(8):1740.
[96] Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T. Chemical Communications, 2015, 51(37):7911.
[97] Narula C K, Allard L F, Stocks G M, Mosesdebusk M. Scientific Reports, 2014, 4:7238.
[98] Wang L, Zhang S, Zhu Y, Patlolla A, Shan J, Yoshida H, Takeda S, Frenkel A I, Tao F. ACS Catalysis, 2013, 3(5):1011.
[99] Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Applied Catalysis B:Environmental, 1996, 9(1/4):25.
[100] Thirupathi B, Smirniotis P G. Journal of Catalysis, 2014, 288(4):74.
[101] Fang D, Xie J, Hu H, Yang H, He F, Fu Z. Chemical Engineering Journal, 2015, 271:23.
[102] Tang X, Hao J, Wenguo X U, Junhua L I. Chinese Journal of Catalysis, 2006, 27(10):843.
[103] Tang X, Hao J, Xu W, Li J. Catalysis Communications, 2007, 8(3):329.
[104] Tang X, Chao W, Liang S, Cao Q, Hu B, Huang Z. Applied Catalysis B Environmental, 2011, 101(3):598.
[105] Kijlstra W S, Biervliet M, Poels E K, Bliek A. Applied Catalysis B Environmental, 1998, 16(4):327.
[106] Tang X, Hao J, Yi H, Li J. Catalysis Today, 2007, 126(126):406.
[107] Qi G, Yang R T, Chang R. Catalysis Letters, 2003, 87(1/2):67.
[108] Wu Z, Wang H, Jin R, Liu Y. Catalysis Communications, 2009, 10(6):935.
[109] Qi G, Yang R T, Chang R. Applied Catalysis B:Environmental, 2004, 51(2):93.
[110] Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G. Acs Catalysis, 2015, 5(10):
[111] Kong Z, Wang C, Ding Z, Chen Y, Zhang Z. Catalysis Communications, 2015, 64:27.
[112] Shen K, Zhang Y, Wang X, Xu H, Sun K, Zhou C. Journal of Energy Chemistry, 2013, 22(4):617.
[113] Zhou C, Zhang Y, Wang X, Xu H, Sun K, Kai S. Journal of Colloid & Interface Science, 2013, 392(4):319.
[114] Min K, Park E D, Ji M K, Yie J E. Catalysis Today, 2006, 111(3):236.
[115] Li J, Chen J, Ke R, Luo C, Hao J. Catalysis Communications, 2007, 8(12):1896.
[116] Chen Z, Xuehui L I, Gao X, Jiang Y, Yangxiao L V, Wang F, Wang L. Chinese Journal of Catalysis, 2009, 30(1):4.
[117] Peña D A, Uphade B S, Smirniotis P G. Journal of Catalysis, 2004, 221(2):421.
[118] Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Journal of Catalysis, 1997, 171(1):219.
[119] Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Journal of Catalysis, 1997, 171:208.
[120] Smirniotis P G, Peña D A, Uphade B S. Angewandte Chemie International Edition, 2001, 40(13):2479.
[121] Amores J G, Escribano V S, Ramis G, Busca G. Applied Catalysis B Environmental, 1997, 13(1):45.
[122] Kapteijn F, Singoredjo L, Andreini A, Moulijn J A. Applied Catalysis B Environmental, 1994, 3(93):173.
[123] Kapteijn F, Singoredjo L, Vandriel M, Andreini A, Moulijn J A, Ramis G, Busca G. Journal of Catalysis, 1994, 150(1):105.
[124] Marbán G, Valdés-Solís T, Fuertes A B. Journal of Catalysis, 2004, 226(1):138.
[125] Marbán G, Valdés-Solís T, Fuertes A B. Physical Chemistry Chemical Physics, 2003, 2(2):453.
[126] Marbán G, Fuertes A B. Catalysis Letters, 2002, 84(1/2):13.
[127] Song W, Liu J, Zheng H, Ma S, Wei Y, Duan A, Jiang G, Zhao Z, Hensen E J M. Catalscitechnol, 2015,
[128] Gálvez M E, Lázaro M J, Moliner R. Catalysis Today, 2005, (s 102/103):142.
[129] Boyano A, Iritia M C, Malpartida I, Larrubia M A, Alemany L J, Moliner R, Lázaro M J. Catalysis Today, 2008, 137(s 2/4):222.
[130] Pei L, Li C, Zeng G, He L, Peng D, Cui H, Li S, Zhai Y. Applied Catalysis B Environmental, 2010, 96(1):157.
[131] Fan X, Qiu F, Yang H, Tian W, Hou T, Zhang X. Catalysis Communications, 2011, 12(14):1298.
[132] Li Q, Yang H, Qiu F, Zhang X. Journal of Hazardous Materials, 2011, 356:121
[133] Ma Z, Yang H, Qian L, Zheng J, Zhang X. Applied Catalysis A General, 2012, s 427/428(10):43.
[134] Yao X, Lei Z, Li L, Liu L, Yuan C, Xian D, Fei G, Yu D, Tang C, Zhuo C. Applied Catalysis B Environmental, 2014, s 150/151(11):315.
[135] Centi G, Perathoner S, Biglino D, Giamello E. Journal of Catalysis, 1995, 152(1):75.
[136] Moreno-Tost R, Castellón E R, Jiménez-López A. Journal of Molecular Catalysis A Chemical, 2006, 248(1/2):126.
[137] Chen J P, Yang R T, Buzanowski M A, Cichanowicz J E. Industrial & Engineering Chemistry Research, 2002, 29(7):1431.
[138] Zhang R, Zhong Q, Zhao W. Research on Chemical Intermediates, 41(6):3479.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[9] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[10] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[11] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[12] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[13] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[14] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[15] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.