中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 298-308 DOI: 10.7536/PC190610 Previous Articles   Next Articles

Special Issue: 锂离子电池; 金属有机框架材料

Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries

Haodeng Chen1,2, Jianxing Xu1, Shaomin Ji1,**(), Wenjin Ji1, Lifeng Cui2,**(), Yanping Huo1,**()   

  1. 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
  • Received: Online: Published:
  • Contact: Shaomin Ji, Lifeng Cui, Yanping Huo
  • About author:
    ** e-mail: (Shaomin Ji);
    (Lifeng Cui);
    (Yanping Huo)
  • Supported by:
    National Natural Science Foundation of China(61671162); National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(21975053); Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025); Technology Plan of Guangdong Province(2019A050510042)
Richhtml ( 66 ) PDF ( 1665 ) Cited
Export

EndNote

Ris

BibTeX

As the secondary battery with the highest specific energy, lithium ion battery is widely used in portable electronic devices, new energy vehicles and large-scale energy storage power stations. Currently, commercial lithium-ion batteries are facing some technical bottlenecks, such as low energy density and short service life. There are many reports about the anode materials of lithium ion batteries, but most of them cannot overcome the shortcomings such as the huge volume expansion before and after lithium, the pulverization of electrode materials, and the large electrode impedance. However, metal oxides derived from metal-organic frameworks(MOFs) and composites are widely used in lithium ion batteries due to their low level charge-discharge potential platform, high capacity and stable cycle performance. Therefore, in this paper, metal oxides derived from MOFs and composites are divided into four modules: mono-metal oxides, bi-metal oxides, bi-component metal oxide composites and metal oxide/carbon composites. The relationships between their synthesis methods, morphologies and electrochemical properties are summarized, and the opportunities and challenges for their future development are forecast.

Table 1 Metal oxides and composite materials prepared from MOFs applied in lithium ion batteries
MOFs Sample Voltage range
(V)
RCa)
(mAh·g-1/cycles)
CDb)
(mA·g-1)
DCc)/CCd)
(mAh·g-1)
CEe) ref
ZIF-67 Co3O4 0.01~3.0 1335/100 100 1735/1083 96% 31
MOF-71 Co3O4 0.001~3.0 913/60 200 1286.1/879.5 97% 32
{Ni3(HCOO)6·DMF} n NiO 0.01~3.0 760/100 200 1149/850 ~100% 33
Cu-BTC CuO 0.01~3.0 1085/100 100 1334.7/836.1 99% 34
Mn-MOF-74 Mn3O4 0.01~3.0 890.7/400 200 1078.9/625.1 ~100% 35
Mn-MOF-74 δ-MnO2 0.01~3.0 991.5/400 200 -/- 99.4% 35
MIL-88-Fe α-Fe2O3 0.01~3.0 911/50 200 1372/940 97% 36
MIL-53(Fe)-2 Fe2O3-2 0.005~3.0 1176/200 100 1456/1048 ~100% 37
Zn-Co-ZIFs ZnxCo3- x O4 0.01~3.0 990/50 100 1272/969 76.2% 38
Co/Ni-MOF-74 Ni0.3Co2.7O4 0.01~3.0 1410/200 100 1737/1189 - 39
Co/Ni-MOF-74 NiCo2O4 0.01~3.0 1157/200 100 1693/1057 - 39
Co[Fe(CN)6]0.667 CoFe2O4 0.01~3.0 1115/200 1000 1352/1190 85.3% 40
NMOFs NiFe2O4 0.01~3.0 1071/200 1000 1245/1152 - 41
ZF-MOFs ZnFe2O4/ZnO 0.01~3.0 537/500 500 1156/839 ~100% 42
Ni-BTC CuO@NiO 0.005~3.0 1061/200 100 1218/856 ~100% 43
Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 Fe2O3@NiCo2O4 0.01~3.0 1079.6/100 100 1311.4/902.7 96% 44
[Cu3(btc)2)] n CuO/Cu2O 0.01~3.0 740/250 100 727/513 - 45
MIL-101(Cr3+) Cr2O3@TiO2 0.05~3.0 510/500 500 1138/- - 46
IRMOF-1 ZnO QDs@C 0.002~3.0 1200/50 75 2300/- ~100% 47
Mn-doped MIL-53(Fe) MnO-Fe3O4@C 0.01~3.0 1297.5/200 200 1281.4/938.6 96.5% 48
ABO3-type MOF Fe3O4@C 0.01~3.0 1041/50 100 1714/1333 96%~99% 49
Co(2,3-chedc)(DABCO)0.5 CoO-NCNTs 0.01~3.0 450/300 500 1156/945 ~100% 50
Ni@ZIF-8 Ni@ZnO/CNF 0.01~3.0 1051/100 100 1547/1100 ~99% 27
Co-Ti-MOF Ti-CoO@C 0.01~3.0 1108/150 200 1749/830.7 86.6% 51
Zn-Mn-BTC Zn x MnO@C 0.01~3.0 1050/200 100 1565.9/954.6 99% 52
ZIF-8 C-ZnCo2O4-ZnO 0~3.0 1318/150 200 1311/898 ~100% 53
Fe/Mn-MOF-74 Fe-Mn-O/C 0~3.0 1294/200 100 1333/837 98.5% 54
Table 2 Full cell performance comparison of various nanostructured anode materials with different cathodes
Fig.1 Schematic of the fabrication processes of the 3D layer-by-layer MnO x hierarchically mesoporous micro-cuboids[35]. Copyright 2018,ACS
Fig.2 (A~C) SEM images at various magnifications,(D) TEM images,(E) HR-TEM images, and (F) SAED pattern of δ-MnO2 materials by Mn-MOF-74 templating at room temperature[35]. Copyright 2018,ACS
Fig.3 Electrochemical properties of the porous ZnxCo3- x O4 hollow polyhedra as electrodes in LiBs:(a) charge-discharge voltage profiles at a current density of 100 mA·g-1,(b) discharge capacities versus cycle number at a current density of 100 mA·g-1, and(c) rate capability at various current rates between 1 and 10 C[38]. Copyright 2014,ACS
Fig.4 Schematic illustration showing the one-step microwave-assisted synthesis of a bimetal organic framework and its derived mesoporous Co-Ni-O nanorod for lithium storage application[39]. Copyright 2015,Wiley
Fig.5 Electrochemical performances of multilayer CuO@NiO spheres:(a) cycle voltammogram profile,(b) first cycle discharge(lithium insertion) and charge(lithium extraction) curve,(c) cycling performance at a current of 0.1 Ah·g-1, (d) Nyquist plots for the first, third and 200 cycles, (e) TEM image of the anode after 200 cycles[43].Copyright 2015, ACS
Fig.6 Schematic illustration for the fabrication of hierarchical MnO-doped Fe3O4@C composite nanospheres[48]. Copyright 2018, ACS
Fig.7 (a,b) SEM images,(c,d) TEM images,(e,f) HRTEM images, and (g) elemental mapping images of Fe-Mn-O/C microspheres[54]. Copyright 2019,RSC
Fig.8 Schematic illustration of the detailed formation process of the AZT CNCs[29]. Copyright 2018, Wiley
Fig.9 a) Ultralong cycling performance of AZT-0, AZT-30, and AZT-60 at a high current density of 2.0 A·g-1. CV curves of b) AZT-0, c) AZT-30, and d) AZT-60 at a scan rate of 0.1 mV·s-1 after 10, 50, 100, 250, and 500 charge/discharge cycles[29]. Copyright 2018, Wiley
[1]
Cui L F, Huang L H, Ji M, Wang Y G, Shi H C, Zuo Y H, Kang S F . J. Power Sources, 2016,333:118.
[2]
Zhang K X, Guo W H, Liang Z B, Zou R Q . Sci. China Chem., 2019,62:417.
[3]
Wu Z Z, Xie J, Xu Z J, Zhang S Q, Zhang Q C . J. Mater. Chem. A, 2019,7:4259. http://xlink.rsc.org/?DOI=C8TA11994E

doi: 10.1039/C8TA11994E
[4]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H . Coordin. Chem. Rev., 2019,388:172.
[5]
Li Y, Xu Y X, Yang W P, Shen W X, Xue H G, Pang H . Small, 2018,14:e1704435. https://www.ncbi.nlm.nih.gov/pubmed/29750438

doi: 10.1002/smll.201704435 pmid: 29750438
[6]
Reddy M V, Subba Rao G V, Chowdari B V . Chem. Rev., 2013,113:5364. https://www.ncbi.nlm.nih.gov/pubmed/23548181

doi: 10.1021/cr3001884 pmid: 23548181
[7]
Shi W H, Xu X L, Zhang L, Liu W X, Cao X H . Funct. Mater. Lett., 2018,11:1830006.
[8]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W . Adv. Mater., 2012,24:5166. https://www.ncbi.nlm.nih.gov/pubmed/22912066

doi: 10.1002/adma.201202146 pmid: 22912066
[9]
Lux L, Williams K, Ma S . CrystEngComm, 2015,17:10. http://xlink.rsc.org/?DOI=C4CE01499E

doi: 10.1039/C4CE01499E
[10]
Jiang Y, Yue J L, Guo Q B, Xia Q Y, Zhou C, Feng T, Xu J, Xia H . Small, 2018,14:e1704296. https://www.ncbi.nlm.nih.gov/pubmed/29655282

doi: 10.1002/smll.201704296 pmid: 29655282
[11]
李振杰(Li Z J), 钟杜(Du Z), 张洁(Zhang J), 陈金伟(Chen J W), 王刚(Wang G), 王瑞林(Wang R L) . 化学进展 (Progress in Chemistry), 2019,31:201.
[12]
赵云(Zhao Y), 亢玉琼(Kang Y Q), 金玉红(Jin Y H), 王莉(Wang L), 田光宇(Tian G Y), 何向明(He X M) . 化学进展 (Progress in Chemistry), 2019,31:613.
[13]
Sundriyal S, Kaur H, Bhardwaj S K, Mishra S, Kim K H, Deep A . Coordin. Chem. Rev., 2018,369:15.
[14]
Xia W, Mahmood A, Zou R Q, Xu Q . Energy Environ. Sci., 2015,8:1837.
[15]
Jeong E, Lee W R, Ryu D W, Kim Y, Phang W J, Koh E K, Hong C S . Chem. Commun., 2013,49:2329. https://www.ncbi.nlm.nih.gov/pubmed/23403976

doi: 10.1039/c3cc00093a pmid: 23403976
[16]
Foster M E, Azoulay J D, Wong B M, Allendorf M D . Chem. Sci., 2014,5:2081.
[17]
Ramaswamy P, Wong N E, Shimizu G K . Chem. Soc. Rev., 2014,43:5913. https://www.ncbi.nlm.nih.gov/pubmed/24733639

doi: 10.1039/c4cs00093e pmid: 24733639
[18]
Zhang X D, Li H X, Hou F L, Yang Y, Dong H, Liu N, Wang Y X, Cui L F . Appl. Surf. Sci., 2017,411:27.
[19]
Zhang X D, Yang Y, Lv X T, Wang Y X, Cui L F . Catalysts, 2017,7:382.
[20]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R . Nat. Mater., 2010,9:172. https://www.ncbi.nlm.nih.gov/pubmed/20010827

doi: 10.1038/nmat2608 pmid: 20010827
[21]
Yaghi O M, Li H L . J. Am. Chem. Soc., 1995,117:10401.
[22]
白蕾(Bai L), 王艳凤(Wang Y F), 霍淑慧(Huo S H), 卢小泉(Lu X Q) . 化学进展 (Progress in Chemistry), 2018,31:191.
[23]
付艳艳(Fu Y Y), 严秀平(Yan X P) . 化学进展 (Progress in Chemistry), 2012,25:221.
[24]
Hu L, Chen Q W . Nanoscale, 2014,6:1236. https://www.ncbi.nlm.nih.gov/pubmed/24356788

doi: 10.1039/c3nr05192g pmid: 24356788
[25]
Xia H c, Zhang J A, Yang Z, Guo S Y, Guo S S, Xu Q . Nanomicro. Lett., 2017,9:43. https://www.ncbi.nlm.nih.gov/pubmed/30393738

doi: 10.1007/s40820-017-0144-6 pmid: 30393738
[26]
Song Y H, Li X, Sun L L, Wang L . RSC Adv., 2015,5:7267.
[27]
Joshi B, Samuel E, Il Kim Y, Kim M W, Jo H S, Swihart M T, Yoon W Y, Yoon S S . Chem. Eng. J., 2018,351:127. https://linkinghub.elsevier.com/retrieve/pii/S1385894718309124

doi: 10.1016/j.cej.2018.05.098
[28]
Cui L F, Ji M, Mao L H, Kang S F, Wang Y G, Shi H C . J. Electrochem. Soc., 2016,163:A2017.
[29]
Liu Z B, Ji S M, Xu X J, Hu R Z, Liu J W, Liu J . Chem. Eur. J., 2018,24:582.
[30]
Cui Y J, Yue Y F, Qian G D, Chen B L . Chem. Rev., 2011,112:1126. https://www.ncbi.nlm.nih.gov/pubmed/21688849

doi: 10.1021/cr200101d pmid: 21688849
[31]
Shao J, Wan Z M, Liu H M, Zheng H Y, Gao T, Shen M, Qu Q T, Zheng H H . J. Mater. Chem. A, 2014,2:12194.
[32]
Li C, Chen T Q, Xu W J, Lou X B, Pan L K, Chen Q, Hu B W . J. Mater. Chem. A, 2015,3:5585.
[33]
Xu J M, Tang H B, Xu T T, Wu D, Shi Z F, Tian Y T, Li X J . Ionics, 2017,23:3273. http://link.springer.com/10.1007/s11581-017-2160-4

doi: 10.1007/s11581-017-2160-4
[34]
Hu X S, Li C, Lou X B, Yang Q, Hu B W . J. Mater. Chem. A, 2017,5:12828. http://xlink.rsc.org/?DOI=C7TA02953E

doi: 10.1039/C7TA02953E
[35]
Hu X, Lou X, Li C, Yang Q, Chen Q, Hu B W . ACS Appl. Mater. Inter., 2018,10:14684. https://www.ncbi.nlm.nih.gov/pubmed/29637762

doi: 10.1021/acsami.8b00953 pmid: 29637762
[36]
Xu X D, Cao R G, Jeong S, Cho J . Nano Lett., 2012,12:4988. https://www.ncbi.nlm.nih.gov/pubmed/22881989

doi: 10.1021/nl302618s pmid: 22881989
[37]
Guo W X, Sun W W, Lv L P, Kong S F, Wang Y . ACS Nano, 2017,11:4198. https://www.ncbi.nlm.nih.gov/pubmed/28334522

doi: 10.1021/acsnano.7b01152 pmid: 28334522
[38]
Wu R B, Qian X K, Zhou K, Wei J, Lou J, Ajayan P M . ACS Nano, 2014,8:6297. https://www.ncbi.nlm.nih.gov/pubmed/24833068

doi: 10.1021/nn501783n pmid: 24833068
[39]
Li H, Liang M, Sun W W, Wang Y . Adv. Funct. Mater., 2016,26:1098. http://doi.wiley.com/10.1002/adfm.v26.7

doi: 10.1002/adfm.v26.7
[40]
Guo H, Li T T, Chen W W, Liu L X, Yang X J, Wang Y P, Guo Y C . Nanoscale, 2014,6:15168. https://www.ncbi.nlm.nih.gov/pubmed/25374151

doi: 10.1039/c4nr04422c pmid: 25374151
[41]
Guo H, Li T T, Chen W W, Liu L X, Qiao J L, Zhang J J . Sci. Rep., 2015,5:13310. https://www.ncbi.nlm.nih.gov/pubmed/26347981

doi: 10.1038/srep13310 pmid: 26347981
[42]
Cao H, Zhu S Q, Yang C, Bao R Q, Tong L N, Hou L R, Zhang X G, Yuan C Z . Nanotechnology, 2016,27:465402. https://www.ncbi.nlm.nih.gov/pubmed/27749279

doi: 10.1088/0957-4484/27/46/465402 pmid: 27749279
[43]
Guo W X, Sun W W, Wang Y . ACS Nano, 2015,9 11462. https://www.ncbi.nlm.nih.gov/pubmed/26442790

doi: 10.1021/acsnano.5b05610 pmid: 26442790
[44]
Huang G, Zhang L L, Zhang F F, Wang L M . Nanoscale, 2014,6:5509. https://www.ncbi.nlm.nih.gov/pubmed/24730026

doi: 10.1039/c3nr06041a pmid: 24730026
[45]
Hu L, Huang Y M, Zhang F P, Chen Q W . Nanoscale, 2013,5:4186. https://www.ncbi.nlm.nih.gov/pubmed/23584557

doi: 10.1039/c3nr00623a pmid: 23584557
[46]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Chen B L, Qian G D . Micro. Meso. Mater., 2015,203:86. https://linkinghub.elsevier.com/retrieve/pii/S1387181114006064

doi: 10.1016/j.micromeso.2014.10.026
[47]
Yang S J, Nam S H, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R . J. Am. Chem. Soc., 2013,135:7394. https://www.ncbi.nlm.nih.gov/pubmed/23647071

doi: 10.1021/ja311550t pmid: 23647071
[48]
He Z S, Wang K, Zhu S S, Huang L A, Chen M M, Guo J F, Pei S E, Shao H B, Wang J M . ACS Appl. Mater. Interfaces, 2018,10:10974. https://www.ncbi.nlm.nih.gov/pubmed/29537815

doi: 10.1021/acsami.8b01358 pmid: 29537815
[49]
Yang L, Tian Y, Ge P, Zhao G G, Pu T C, Yang Y C, Zou G Q, Hou H S, Huang L, Ji X B . ChemElectroChem, 2018,5:3426.
[50]
Pang Y C, Chen S, Xiao C H, Ma S D, Ding S J . J. Mater. Chem. A, 2019,7:4126.
[51]
Li J K, Wang D, Zhou J S, Hou L, Gao F M . ChemElectroChem, 2019,6:917. http://doi.wiley.com/10.1002/celc.v6.3

doi: 10.1002/celc.v6.3
[52]
Wang D, Zhou W W, Zhang R, Huang X X, Zeng J J, Mao Y F, Ding C Y, Zhang J, Liu J P, Wen G W , J. Mater. Chem. A, 2018,6:2974.
[53]
Gan Q M, Zhao K M, Liu S Q, He Z . J. Mater. Sci., 2017,52:7768. http://link.springer.com/10.1007/s10853-017-1043-4

doi: 10.1007/s10853-017-1043-4
[54]
Sun W W, Chen S, Wang Y . Dalton Trans., 2019,48:2019. https://www.ncbi.nlm.nih.gov/pubmed/30667432

doi: 10.1039/c8dt04716b pmid: 30667432
[55]
Wei T, Zhang M, Wu P, Tang Y J, Li S L, Shen F C, Wang X L, Zhou X P, Lan Y Q . Nano Energy, 2017,34:205.
[56]
Xie X C, Huang K J, Wu X . J. Mater. Chem. A, 2018,6:6754. http://xlink.rsc.org/?DOI=C8TA00612A

doi: 10.1039/C8TA00612A
[57]
Balach J, Linnemann J, Jaumann T, Giebeler L . J. Mater. Chem. A, 2018,6:23127.
[58]
Zhong Y J, Xu X M, Liu Y, Wang W, Shao Z P . Polyhedron, 2018,155:464.
[59]
Xia X H, Zhang Y Q, Chao D L, Guan C, Zhang Y J, Li L, Ge X, Bacho I M, Tu J, Fan H J . Nanoscale, 2014,6:5008. https://www.ncbi.nlm.nih.gov/pubmed/24696018

doi: 10.1039/c4nr00024b pmid: 24696018
[60]
Pan Y, Zeng W J, Li L, Zhang Y Z, Dong Y N, Cao D X, Wang G L, Lucht B L, Ye K, Cheng K . Nanomicro. Lett., 2017,9:20. https://www.ncbi.nlm.nih.gov/pubmed/30460316

doi: 10.1007/s40820-016-0122-4 pmid: 30460316
[61]
Xie Z Q, Xu W W, Cui X D, Wang Y . ChemSusChem, 2017,10:1645. https://www.ncbi.nlm.nih.gov/pubmed/28150903

doi: 10.1002/cssc.201601855 pmid: 28150903
[62]
Yuan C Z, Wu H B, Xie Y, Lou X W . Angew. Chem. Int. Ed. Engl., 2014,53:1488. https://www.ncbi.nlm.nih.gov/pubmed/24382683

doi: 10.1002/anie.201303971 pmid: 24382683
[63]
Wu S R, Liu J B, Wang H, Yan H , Int. J. Energy Res., 2019,43:697.
[64]
张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K) . 化学进展 (Progress in Chemistry), 2015,27:174.
[65]
Liu X W, Sun T J, Hu J L, Wang S D . J. Mater. Chem. A, 2016,4:3584.
[66]
Fan H H, Zhou L, Li H H . 2D Materials, 2019,6:045022.
[67]
Shen L S, Song H W, Wang C X . Electrochimica Acta, 2017,235:595.
[68]
Xia Y Wang B B, Wang G . ChemElectroChem, 2016,3:299.
[69]
Zhou X Y, Yu Y, W Y J . ChemElectroChem. 2019,6:2056 https://onlinelibrary.wiley.com/toc/21960216/6/7

doi: 10.1002/celc.v6.7
[70]
Wang X X, Xue H J, Na Z L . J. Power Sources, 2018,396:659.
[71]
Hao W J, Chen S M, Cai Y J . J. Mater. Chem. A, 2014,2:13801.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[6] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[7] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[11] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[12] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[15] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.