中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1350-1361 DOI: 10.7536/PC190413 Previous Articles   Next Articles

Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide

Jiawei Li, Yanwei Ren**(), Huanfeng Jiang   

  1. School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Received: Online: Published:
  • Contact: Yanwei Ren
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2016YFA0602900); National Natural Science Foundation of China(21372087)
Richhtml ( 56 ) PDF ( 2904 ) Cited
Export

EndNote

Ris

BibTeX

As the main greenhouse gas in the atmosphere, carbon dioxide(CO2) has caused a series of environmental and energy-related problems worldwide. Therefore, there is an urgent need to develop a variety of methods to capture CO2 and convert it into useful chemical products, thus effectively improving the environment and promoting sustainable development. In the past decades, metal-organic frameworks(MOFs) have shown prominent heterogeneous catalytic activity due to their multiple active sites, large BET surface area, structural diversity and easy functionalization. These characteristics endow MOFs catalysts with unique advantages in the field of CO2 chemical fixation. The application of MOFs catalysts in organic synthesis involving CO2, such as chemical reactions of CO2 with epoxides, terminal alkynes, propargyl alcohol and propargyl amine are reviewed herein, and the structure-function relationship between the active sites within MOFs and catalytic performances are illustrated.

Scheme. 1 Proposed mechanism for the cyclic carbonate synthesis from CO2 and epoxide
Scheme. 2 Synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ZIF-67[28]
Scheme. 3 Procedure for the synthesis of functionalized IRMOF-3 and the synthesis of cyclic carbonates[34]
Scheme. 4 Reversible structural change of Zn4O clusters in IRMOFs and the synthesis of cyclic carbonates[36]
Scheme. 5 Synthesis of cyclic carbonates catalyzed by a Cu-MOF[38]
Scheme. 6 Synthesis of cyclic carbonates catalyzed by MIL-101-N(n-Bu)3Br and MIL-101-P(n-Bu)3Br[42]
Scheme. 7 Synthesis of cyclic carbonates catalyzed by(I-)Meim-UiO-66[47]
Scheme. 8 Synthesis of cyclic carbonates catalyzed by a chiral salen-Ni based MOF[57]
Scheme. 9 Synthesis of cyclic carbonates catalyzed by a chiral porphyrin-salen based MOF[59]
Scheme. 10 Synthesis of cyclic carbonates catalyzed by MMCF-2[62]
Scheme. 11 Synthesis of cyclic carbonates catalyzed by MOF-525, PCN-222 和PCN-224[64]
Scheme. 12 Reaction mechanism of carboxylation of CO2 with terminal alkynes
Scheme. 13 Carboxylation of CO2 with terminal alkynes catalyzed Ag@MIL-101[68]
Scheme. 14 Cycloaddition of CO2 with propargylamine catalyzed by silver cluster based MOFs[71]
Scheme. 15 Cycloaddition of CO2 with propargyl alcohol catalyzed by Ag+ supported MOFs[72]
Scheme. 16 Cycloaddition of CO2 with propargyl alcohol catalyzed by a noble-metal-free MOFs[73]
[1]
Zhao Z, Kong X, Yuan Q, Xie H, Yang D, Zhao J, Fan H, Jiang L . Phys. Chem. Chem. Phys., 2018,20:19314.
[2]
Liu D, Li G, Liu J, Wei Y, Guo H . ACS Appl. Mater. Inter., 2018,10:22119.
[3]
Calabrese C, Liotta L F, Giacalone F, Gruttadauria M, Aprile C . ChemCatChem, 2019,11:560.
[4]
Tang F, Hou J, Liang K, Huang J, Liu Y N . Eur. J. Inorg. Chem., 2018,4175.
[5]
Chen Y Z, Zhang R, Jiao L, Jiang H L . Coord. Chem. Rev., 2018,362:1.
[6]
Dhakshinamoorthy A, Asiri A M, Garcia H . Chem. Soc. Rev., 2015,44:1922.
[7]
Drake T, Ji P, Lin W . Acc. Chem. Res., 2018,51:2129.
[8]
Jiao L, Wang Y, Jiang H L, Xu Q . Adv.Mater., 2018,30:e1703663.
[9]
Wang H, Li J . Acc. Chem. Res., 2019,52:1968.
[10]
Wang H, Lustig W P, Li J . Chem. Soc. Rev., 2018,47:4729.
[11]
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom A M, Zou X . J. Am. Chem. Soc., 2016,138:962.
[12]
Kim S, Joarder B, Hurd J A, Zhang J, Dawson K W, Gelfand B S, Wong N E, Shimizu G K H . J. Am. Chem. Soc., 2018,140:1077.
[13]
Mouarrawis V, Plessius R, Vlugt J I, Reek J N H . Front. Chem., 2018,6:623.
[14]
Fujie K, Kitagawa H . Coord. Chem. Rev., 2016,307:382.
[15]
Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer R A . Chem. Soc. Rev., 2014,43:6062.
[16]
Yang Q H, Xu Q, Jiang H L . Chem. Soc. Rev., 2017,46:4774.
[17]
Liu J, Thallapally P K. McGrail B P, Brown D R, Liu J . Chem. Soc. Rev., 2012,41:2308.
[18]
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R . Chem. Rev., 2012,112:724.
[19]
Yu J, Xie L H, Li J R, Ma Y, Seminario J M, Balbuena P B . Chem. Rev., 2017,117:9674.
[20]
Leitner W . Coord. Chem. Rev., 1996,155:257.
[21]
He H, Perman J A, Zhu G, Ma S . Small, 2016,12:6309.
[22]
Liang J, Huang Y B, Cao R . Coord. Chem. Rev., 2019,378:32.
[23]
Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F . Mater. Horiz., 2017,4:345.
[24]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M . Proc. Natl. Acad. Sci., 2006,103:10186.
[25]
Miralda C M, Macias E E, Zhu M, Ratnasamy P, Carreon M A . ACS Catal., 2011,2:180.
[26]
Tharun J, Mathai G, Kathalikkattil A C, Roshan R, Won Y S, Cho S J, Chang J S, Park D W . ChemPlusChem, 2015,80:715.
[27]
Kuruppathparambil R R, Jose T, Babu R, Hwang G Y, Kathalikkattil A C, Cherian A, Kim D W, Park D W . Appl.Catal. B: Environ., 2016,182:562.
[28]
Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampour N, Verpoort F . New J. Chem., 2016,40:5170.
[29]
Bhin K M, Jose T, Kuruppathparambil R R, Kim D W, Chung Y, Park D W . J. CO2 Util., 2017,17:112.
[30]
Ryu H, Roshan R, Kim M I, Kim D W, Selvaraj M, Park D W . Korean J. Chem. Eng., 2017,34:928.
[31]
Ugale B, Dhankhar S S, Nagaraja C M . Inorg. Chem., 2016,55:9757.
[32]
Eddaoudi M, Li L, Yaghi O M . J. Am. Chem. Soc., 2000,122:1391.
[33]
Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B . Green Chem., 2009,11:1031.
[34]
Zhou X, Zhang Y, Yang X, Zhao L, Wang G . J. Mol. Catal. A: Chem., 2012,361/362:12.
[35]
Babu R, Kathalikkattil A C, Roshan R, Tharun J, Kim D W, Park D W . Green Chem., 2016,18:232.
[36]
Li J, Ren Y, Qi C, Jiang H . Eur. J. Inorg. Chem., 2017,1478.
[37]
Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D . Science, 1999,283:1148.
[38]
Li P Z, Wang X J, Liu J, Phang H S, Li Y, Zhao Y . Chem. Mater., 2017,29:9256.
[39]
He H M, Sun Q, Gao W Y, Perman J A, Sun F X, Zhu G S, Aguila B, Forrest K, Space B, Ma S Q . Angew. Chem. Int. Ed., 2018,57:4657.
[40]
Ferey G . Science, 2005,310:1119.
[41]
Zalomaeva O V, Chibiryaev A M, Kovalenko K A, Kholdeeva O A, Balzhinimaev B S, Fedin V P . J. Catal., 2013,298:179.
[42]
Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z. Feng S . J. Mater. Chem. A, 2015,3:23136.
[43]
Ding M, Jiang H L . ACS Catal., 2018,8:3194.
[44]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P . J. Am. Chem. Soc., 2008,130:13850.
[45]
Kim J, Kim S N, Jang H G, Seo G, Ahn W S . Appl. Catal. A: Gen., 2013,453:175.
[46]
Liu L, Zhang J, Fang H, Chen L, Su C Y . Chem. Asian J., 2016,11:2278.
[47]
Liang J, Chen R P, Wang X Y, Liu T T, Wang X S, Huang Y B, Cao R . Chem. Sci., 2017,8:1570.
[48]
Ding L G, Yao B J, Jiang W L, Li J T, Fu Q J, Li Y A, Liu Z H, Ma J P, Dong Y B . Inorg. Chem., 2017,56:2337.
[49]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M . Science, 2013,341:1230444.
[50]
Yang D A, Cho Y, Kim J, Yang S T, Ahn W S . Energy Environ. Sci., 2012,5:6465.
[51]
Barthelet K, Férey G, Riou D . Chem. Commun., 2004,520.
[52]
Lescouet T, Chizallet C, Farrusseng D . ChemCatChem, 2012,4:1725.
[53]
Liu L, Wang S M, Han Z B, Ding M L, Yuan D Q, Jiang H L . Inorg. Chem., 2016,55:3558.
[54]
Wei N, Zhang Y, Liu L, Han Z B, Yuan D Q . Appl. Catal. B: Environ., 2017,219:603.
[55]
Dong J, Xu H. Hou S L, Wu Z L, Zhao B . Inorg. Chem., 2017,56:6244.
[56]
Ren Y, Shi Y, Chen J, Yang S, Qi C, Jiang H . RSC Adv., 2013,3:2167.
[57]
Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q . Dalton Trans., 2013,42:9930.
[58]
Li J, Ren Y, Qi C, Jiang H . Dalton Trans., 2017,46:7821.
[59]
Li J, Fan Y, Ren Y, Liao J, Qi C, Jiang H . Inorg. Chem., 2018,57:1203.
[60]
Liang J, Xie Y Q, Wu Q, Wang X Y, Liu T T, Li H F, Huang Y B, Cao R . Inorg. Chem., 2018,57:2584.
[61]
He L, Nath J K, Lin Q . Chem. Commun., 2019,55:412.
[62]
Gao W Y, Chen Y, Niu Y, Williams K, Cash L, Perez P J, Wojtas L, Cai J, Chen Y S, Ma S . Angew. Chem. Int. Ed., 2014,53:2615.
[63]
Zhu J, Usov P M, Xu W, Celis-Salazar P J, Lin S, Kessinger M C, Landaverde-Alvarado C, Cai M, May A M, Slebodnick C, Zhu D, Senanayake S D, Morris A J . J. Am. Chem. Soc., 2018,140:993.
[64]
Epp K, Semrau A L, Cokoja M, Fischer R A . ChemCatChem, 2018,10:3506.
[65]
Guo C X, Yu B, Xie J N, He L N . Green Chem., 2015,17:474.
[66]
Wu Z, Sun L, Liu Q, Yang X, Ye X, Hu Y, Huang Y . Green Chem., 2017,19:2080.
[67]
Yu D, Tan M X, Zhang Y . Adv. Synth. Catal., 2012,354:969.
[68]
Liu X H, Ma J G, Niu Z, Yang G M, Cheng P . Angew. Chem. Int. Ed., 2015,54:988.
[69]
Zhu N N, Liu X H, Li T, Ma J G, Cheng P, Yang G M . Inorg. Chem., 2017,56:3414.
[70]
Dutta G, Jana A K, Singh D K, Eswaramoorthy M, Natarajan S . Chem. Asian J., 2018,13:2677.
[71]
Chang Z, Jing X, He C, Liu X, Duan C . ACS Catal., 2018,8:1384.
[72]
Zhang G, Yang H, Fei H . ACS Catal., 2018,8:2519.
[73]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B . Angew. Chem. Int. Ed., 2019,58:577.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[4] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[5] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[6] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[7] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[8] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[9] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[10] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[11] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[12] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[13] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[14] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[15] Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan. π Complexation Adsorbents Based on Porous Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(6): 628-636.