中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1860-1869 DOI: 10.7536/PC160731 Previous Articles   Next Articles

• Review and comments •

Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite

Xie Lijuan1,2, Shi Xiaoyan3,4, Liu Fudong3,4, Ruan Wenquan1,2*   

  1. 1. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122;
    2. Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China;
    3. Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51508231, 51278486) and the Fundamental Research Funds for the Central Universities (JUSRP11524).
PDF ( 820 ) Cited
Export

EndNote

Ris

BibTeX

The purification of NOx from diesel engine exhaust is an important topic in the field of air pollution control, which is significant for the improvement of current unban air quality. The selective catalytic reduction of NOx with NH3 (NH3-SCR) is one of the most promising technologies for the control of NOx emission from diesel engine exhaust. In recent years, Cu-CHA catalysts, which are obtained from loading transition metal Cu on zeolites with chabazite (CHA) structure, have attracted much attention in the field of NH3-SCR reaction, due to their excellent NH3-SCR activity and hydrothermal stability. Cu-SSZ-13 and Cu-SAPO-34 are the two typical Cu-CHA catalysts. In this review, the progress of NOx control in the field of diesel engine exhaust with Cu-CHA catalysts is stated from three aspects firstly, including the influences of preparation method, the effects of reaction condition and the NH3-SCR reaction mechanism. Then, the application of M-CHA catalysts in NH3-SCR reaction are elaborated, where M is limited as some other transition metal and rare earth metal. Meanwhile, the advantages of bimetallic-based CHA zeolites in NH3-SCR reaction are identified. Based on these results, the possible improvement orientations for NH3-SCR catalysts with CHA zeolites structure are also prospected.

Contents
1 Introduction
2 Application of Cu-CHA catalysts in NH3-SCR
2.1 Cu-SSZ-13 used for NOx purification
2.2 Cu-SAPO-34 used for NOx purification
3 Application of Fe-CHA catalysts in NH3-SCR
4 Application of bimetallic active center catalysts with CHA structure in NH3-SCR
5 Conclusion and outlook

CLC Number: 

[1] 中华人民共和国环境保护部(Ministry of Environmental Protection of the People's Republic of China). http://dqhj.mep.gov.cn/jdchjgl/zhgldt/201605/P020160513584284608848.pdf, 2014.
[2] 陈艳平(Chen Y P), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in chemistry), 2014, 26:248.
[3] 帅石金(Shuai S J), 唐韬(Tang T), 赵彦光(Zhan Y G), 华伦(Hua L).汽车安全与节能学报(Journal of Automotive Safety and Energy), 2012, 3:200.
[4] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 贺泓(He H).化学进展(Progress in Chemistry), 2012, 4:445.
[5] 贺泓(He H), 翁端(Weng D), 资新运(Zi X Y).环境科学(Environmental Science), 2007, 28:1169.
[6] Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal. Reviews, 2008, 50:492.
[7] Park J, Park H, Baik J, Nam I, Shin C, Lee J, Cho B, Oh S. J. Catal., 2006, 240:47.
[8] Pieterse J A Z, Pirngruber G D, van Bokhoven J A, Booneveld S. Appl. Catal. B, 2007, 71:16.
[9] Kefirov R, Penkova A, Hadjiivanov K, Dzwigaj S, Che M. Micropor. Mesopor. Mater., 2008, 116:180.
[10] Heo I, Lee Y, Nam I S, Choung J W, Lee J H, Kim H J. Micropor. Mesopor. Mater., 2011, 141:8.
[11] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry-Zeolites and Porous Materials). 北京:科学出版社(Beijing:Science Press), 2004. 29.
[12] 翁端(Weng D), 王蕾(Wang L), 吴晓东(Wu X D), 冉锐(Ran R), 司知蠢(Si Z C). 科技导报(Science & Technology Review), 2013, 31:68.
[13] Andersen P J, Bailie J E, Casci J L, Chen H Y, Fedeyko J M, Foo R K S. WO 2008/132452 A2, 2008.
[14] Bull I, Xue W M, Burk P, Boorse R S, Jaglowski W M, Koermer G S, Moini A, Patchett J A, Dettling J C, Caudle M T. US 7601662, 2009.
[15] Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275:187.
[16] Kwak J H, Tran D, Burton S D, Szanyi J, Lee J H, Peden C H F. J.Catal., 2012, 287:203.
[17] Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Catal. Today, 2012, 184:252.
[18] Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A. Appl. Catal. B, 2012, 127:273.
[19] Wang D, Jangjou Y, Liu Y, Sharma M K, Luo J, Li J, Kamasamudram K, Epling W S. Appl. Catal. B, 2015, 165:438.
[20] Blakeman P G, Burkholder E M, Chen H Y, Collier J E, Fedeyko J M, Jobson H, Rajaram R R. Catal. Today, 2013, 231:56.
[21] Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H. Catal. Today, 2011, 164:495.
[22] 任利敏(Ren L M), 张一波(Zhang Y B), 曾尚景(Zeng S J), 朱龙凤(Zhu L F), 孙琦(Sun Q), 张海燕(Zhang H Y), 杨承广(Yang C G), 孟祥举(Meng X J), 杨向光(Yang X G), 肖丰收(Xiao F S). 催化学报(Chinese Journal of Catalysis), 2012, 33:92.
[23] Kwak J H, Tran D, Szanyi J, Peden C H F, Lee J H. Catal. Letters, 2012, 142:295.
[24] Wang D, Gao F, Peden, C H F, Li J, Kamasamudram K, Epling W S. ChemCatChem, 2014, 6:1579.
[25] Clemens A K S, Shishkin A, Carlsson P A, Skoglundh M, Martínez-Casado F J, Matěj Z, Balmes O, Härelind H. ACS Catal., 2015, 5:6209.
[26] Shwan S, Skoglundh M, Lundegaard L F, Tiruvalam R R, Janssens T V W, Carlsson A, Vennestrøm P N R. ACS Catal., 2015, 5:16.
[27] Krishna K, Seijger G B F, Bleek C M, Makkee M, Mul G, Calis H P A. Catal. Letters, 2003, 86:121.
[28] Deka U, Lezcano-Gonzalez I, Warrender S J, Lorena Picone A, Wright P A, Weckhuysen B M, Beale A M. Micropor. Mesopor. Mater., 2013, 166:144.
[29] Zones S I J. Chem. Society, Faraday Transactions, 1991, 87:3709.
[30] Chen B, Xu R, Zhang R, Liu N. Environ. Sci. Technol, 2014, 48:13909.
[31] Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F S. Chem. Commun., 2011, 47:9789.
[32] Zamadies M, Chen X, Kevan L. J Phys. Chem., 1992, 96:2652.
[33] Xie L, Liu F, Ren L, Shi X, Xiao F S, He H. Environ. Sci. Technol., 2014, 48:566.
[34] Xie L, Liu F, Shi X, Xiao F S, He H. Appl. Catal. B, 2015, 179:206.
[35] Martínez-Franco R, Moliner M, Thogersen J R, Corma A. ChemCatChem, 2013, 5:3316.
[36] Kwak J H, Lee J H, Burton S D, Lipton A S, Peden C H, Szanyi J. Angew. Chem., 2013, 52:9985.
[37] Su W, Chang H, Peng Y, Zhang C, Li J. Environ. Sci. Technol., 2015, 49:467.
[38] Lezcano-Gonzalez I, Deka U, Arstad B, van Yperen-De Deyne A, Hemelsoet K, Waroquier M, van Speybroeck V, Weckhuysen B M, Beale A M. Phys. Chem. Chem. Phys., 2014, 16:1639.
[39] Shan W, Liu F, He H, Shi X, Zhang C. Appl. Catal. B, 2012, 115/116:100.
[40] Shi X, Liu F, Xie L, Shan W, He H. Environ. Sci. Technol., 2013, 47:3293.
[41] Xie L, Liu F, Liu K, Shi X, He H. Catal. Sci. Technol., 2014, 4:1104.
[42] Kumar A, Smith M A, Kamasamudram K, Currier N W, An H, Yezerets A. Catal. Today, 2014, 231:75.
[43] Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Catal. Sci. Technol., 2016, 6:2565.
[44] Ma L, Su W, Li Z, Li J, Fu L, Hao J. Catal. Today, 2015, 245:16.
[45] Lezcano-Gonzalez I, Deka U, van der Bij H E, Paalanen P, Arstad B, Weckhuysen B M, Beale A M. Appl. Catal. B, 2014, 154/155:339.
[46] Yu T, Fan D, Hao T, Wang J, Shen M, Li W. Chem. Engin. J., 2014, 243:159.
[47] Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W. Appl. Catal. B, 2012, 127:137.
[48] Xiang X, Yang M, Gao B, Qiao Y, Tian P, Xu S, Liu Z. RSC Advances, 2016, 6:12544.
[49] Panahi P N, Niaei A, Salari D, Mousavi S M, Delahay G J. Environ. Sci., 2015, 35:135.
[50] Wang L, Li W, Qi G, Weng D. J. Catal., 2012, 289:21.
[51] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. Appl. Catal. B, 2015, 162:501.
[52] Bull I, Muller U. US20100310440A1, 2010.
[53] Fan S, Xue J, Yu T, Fan D, Hao T, Shen M, Li W. Catal. Sci. Technol., 2013, 3:2357.
[54] Martínez-Franco R, Moliner M, Concepcion P, Thogersen J R, Corma A. J. Catal, 2014, 314:73
[55] Niu C, Shi X, Liu F, Liu K, Xie L, You Y, He H. Chem. Eng. J., 2016, 294:254.
[56] Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B, 2011, 102:441.
[57] Wang L, Gaudet J R, Li W, Weng D. J. Catal., 2013, 306:68.
[58] Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal., 2013, 3:2083.
[59] Wang D, Zhang L, Kamasamudram K, Epling W S. ACS Catal., 2013, 3:871.
[60] Yu T, Hao T, Fan D, Wang J, Shen M, Li W. J. Phys. Chem. C, 2014, 118:6565.
[61] 郝腾(Hao T), 王军(Wang J), 于铁(Yu T), 王建强(Wang J Q), 沈美庆(Shen M Q). 物理化学学报(Acta Phys.-Chim. Sin.), 2014, 30:1567.
[62] Zhang L, Wang D, Liu Y, Kamasamudram K, Li J, Epling W. Appl. Catal. B, 2014, 156/157:371.
[63] Wijayanti K, Andonova S, Kumar A, Li J, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Appl. Catal. B, 2015, 166/167:568.
[64] Liu X, Wu X, Weng D, Si Z. Catal. Commun., 2015, 59:35.
[65] Yu T, Wang J, Shen M, Wang J, Li W. Chem. Eng. J., 2015, 264:845.
[66] Leistner K, Olsson L. Appl. Catal. B, 2015, 165:192.
[67] Wang J, Fan D, Yu T, Wang J, Hao T, Hu X, Shen M, Li W. J. Catal., 2015, 322:84.
[68] Ma J, Si Z, Weng D, Wu X, Ma Y. Chem. Eng. J., 2015, 267:191.
[69] Zhang T, Li J, Liu J, Wang D, Zhao Z, Cheng K, Li J. Aiche J, 2015, 61:3825.
[70] Shi X, Liu F, Shan W, He H. Chin. J. Catal., 2012, 33:454.
[71] Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X. Appl. Catal. B, 2011, 102:190.
[72] Ma L, Li J, Cheng Y, Lambert C K, Fu L. Environ. Sci. Technol., 2012, 46:1747.
[73] Ye Q, Wang L, Yang R. T. Appl. Catal. A, 2012, 427/428:24.
[74] Gao F, Kollár M, Kukkadapu R K, Washton N M, Wang Y, Szanyi J, Peden C H F. Appl. Catal. B, 2015, 164:407.
[75] Shishkin A, Kannisto H, Carlsson P A, Härelind H, Skoglundh M. Catal. Sci. Technol., 2014, 4:3917.
[76] Andonova S, Tamm S, Montreuil C, Lambert C, Olsson L. Appl. Catal. B, 2016, 180:775.
[77] Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Appl. Catal. B, 2014, 148/149:520.
[78] Sultana A, Sasaki M, Suzuki K, Hamada H. Catal. Commun., 2013, 41:21.
[79] Yang X, Wu Z, Moses-Debusk M, Mullins D R, Mahurin S M, Geiger R A, Kidder M, Narula C K. J. Phys. Chem. C, 2012, 116:23322.
[80] Zhang R, Li Y, Zhen T. RSC Advances, 2014, 4:52130.
[81] Shen B, Zhang X, Ma H, Yao Y, Liu T J. Environ. Sci., 2013, 25:791.
[82] Liu Z, Yi Y, Li J, Woo S I, Wang B, Cao X, Li Z. Chem. Commun., 2013, 49:7726.
[83] Liu X, Li Y, Zhang R. RSC Advances, 2015, 5:85453.
[84] Wang J, Peng Z, Qiao H, Yu H, Hu Y, Chang L, Bao W. Ind. Eng. Chem. Res., 2016, 55:1174.
[85] Dong X, Wang J, Zhao H, Li Y. Catal. Today, 2015, 258:28.
[86] Cao Y, Zou S, Lan L, Yang Z, Xu H, Lin T, Gong M, Chen Y J. Mol. Catal. A, 2015, 398:304.
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.