中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 1908-1916 DOI: 10.7536/PC200303 Previous Articles   Next Articles

• Review •

Hydrogel-Based Sensing Detection of Bacteria

Xi Su1,2,4, Chuang Ge5, Li Chen1,3,4, Yi Xu1,2,3,4,**()   

  1. 1 Key Disciplines Lab of Novel Micro-Nano Devices and System Technology & Key Laboratory of Optoelectronic Technology and Systems & Ministry of Education, Chongqing University, Chongqing 400044, China
    2 School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    3 School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    4 International R & D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
    5 Chongqing University Cancer Hospital; Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
  • Contact: Yi Xu
  • Supported by:
    the National Natural Science Foundation of China(No. 62071072); the Key Project of National Key Research and Development Plan of Ministry of Science and Technology(No. 2020YFB2009001/2019YFC0214402); the Graduate Scientific Research and Innovation Foundation of Chongqing, China(No. CYB19035); and the Special Funds for Basic Scientific Research in Central Universities(No. 2019CDYGYB003)
Richhtml ( 138 ) PDF ( 2565 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogels have the features of high water content, good flexibility, high viscoelasticity, high biocompatibility, and unique stimulus response characteristic, which makes hydrogel materials attract much attention in the detection of bacteria. The research of hydrogel-based bacterial sensors and sensor chips is of great significance to the basic scientific research of bacteria, and it also has important application value for rapid and efficient detection of bacteria, prevention and control of bacterial pollution in specific environments, and control of disease transmission. The latest research works of hydrogel-based bacterial sensing detection are reviewed in this article. The types of hydrogel and the influence factors of the interaction between hydrogel and bacteria are briefly introduced. The sensors and sensing detection methods based on temperature-sensitive hydrogel, pH-sensitive hydrogel, enzyme-sensitive hydrogel and functionalized hydrogels with specific markers are reviewed and discussed in detail. The research progress of new type hydrogel-based flexible sensors and hydrogel-based microfluidic sensor chips are highlighted. The detection efficiency, signal acquisition, and stability of the hydrogel-based bacterial sensors still need to be further improved and expanded. With the emergence of new hydrogel materials, much more attention have been paid to developments of smart bacterial sensors, flexible sensors, and integrated microfluidic sensor chips which are shown good exploration potential and application prospects in terms of bacterial detection.

Contents

1 Introduction

2 Research on hydrogel and its interaction with bacteria

2.1 Functional polymer hydrogel material

2.2 The interaction between hydrogels and bacteria

3 Hydrogel-based bacterial sensing detection

3.1 Bacterial sensing detection based on temperature-sensitive hydrogel

3.2 Bacterial sensing detection based on pH-sensitive hydrogel

3.3 Bacterial sensing detection based on enzyme-sensitive hydrogel

3.4 Bacterial sensor detection based on specific marker functional hydrogel

4 Hydrogel-based flexible bacteria sensor

5 Microfluidic bacterial sensor chip integrated with hydrogel

6 Conclusion and outlook

Fig.1 Effect of PEG hydrogel thickness on bacterial adhesion[29]
Fig.2 Schematic diagram of the interaction between PNIPAm-GR gel layer and bacteria[32]
Fig.3 (A) Schematic representation of the NF-LAPS sensor[24]; (B) Monitoring bacterial metabolism with fluorescence sensor[37]
Fig.4 (A) Schematic diagram of detection of specific enzymes by a chitosan hydrogel-based fluorescence sensor[40]; (B) Schematic diagram of detection of bacteria by a glucose hydrogel-based fluorescence sensor[41]
Fig.5 (A) Schematic diagram of detection of E. coli by Immune current sensor[44]; (B) Schematic diagram of detection of Candida albicans by optical sensor based on Con A hydrogel[46]
Fig.6 (A) Preparation of hydrogel elastic swab and the results of bacterial collection and detection[49]; (B) Schematic diagram of bacteria detection by FNFM sensor[50]
Fig.7 (A) Schematic diagram of the capture and release of yeast by calcium alginate gel in the chip[52]; (B) Schematic of microfluidic device integrated with silicon hydrogel and flow chart of S. aureus detection[53]; (C) Schematic illustration of the preparation of agarose hydrogel chip and the concentration process of bacteria in the chip[54]
[1]
Sauer S , Kliem M . Nature Reviews Microbiology, 2010, 8( 1): 74.
[2]
Lazcka O , Campo F J D , Muñoz F X . Biosensors and Bioelectronics, 2007, 22( 7): 1205.
[3]
Chen Y , Wang Z , Liu Y , Wang X , Li Y , Ma P , Gu B , Li H . European Journal of Clinical Microbiology & Infectious Diseases, 2018, 37( 6): 1021.
[4]
蒋艳( Jiang Y ), 徐溢( Xu Y ), 王人杰( Wang R J ), 苏喜( Su X ), 董春燕( Dong C Y ). 化学进展( Prog. Chem.), 2015, 27( 9): 1240.
[5]
赵华宙( Zhao H Z ), 王春艳( Wang C Y ), 徐溢( Xu Y ), 王蓉( Wang R ), 蒋艳( Jiang Y ), 廖鑫( Liao X ), 郑祥权( Zheng X Q ). 分析测试学报( J. Instr. Anal.), 2015, 34( 3): 268.
[6]
崔飞云( Cui F Y ), 徐溢( Xu Y ), 赵斌( Zhao B ), 车玉兰( Che Y L ), 刘露露( Liu L L ). 分析测试学报( J. Instr. Anal.), 2017, 36( 6): 817.
[7]
Wang R , Ni Y , Xu Y , Jiang Y , Dong C , Chuan N . Analytica Chimica Acta, 2015, 853: 710.
[8]
Che Y , Xu Y , Wang R , Chen L . Analytical and Bioanalytical Chemistry, 2017, 409( 20): 4709.
[9]
Cui F , Xu Y , Wang R , Liu H , Chen L , Zhang Q , Mu X . Biosensors and Bioelectronics, 2018, 103: 94.
[10]
Wang R , Xu Y , Sors T , Irudayaraj J , Ren W , Wang R . Microchimica Acta, 2018, 185( 3): 184.
[11]
Zhang Z J , Su X , Xu Y , Chen L . Chinese Journal of Analytical Chemistry, 2017, 45( 11): 1589.
[12]
Dmitri I , Ihab A H , Plamen A , Ebtisam W . Biosensors & Bioelectronics, 1999, 14: 26.
[13]
温路新( Wen L X ), 徐溢( Xu Y ), 项松涛( Xiang S T ), 陈李( Chen L ). 化学通报( Chemistry), 2018, 81( 1): 29.
[14]
Dickert F L , Lieberzeit P , Hayden O . Anal. Bioanal. Chem., 2003, 377( 3): 540.
[15]
Chen S H , Wu V C H , Chuang Y C , Lin C S . Journal of Microbiological Methods, 2008, 73( 1): 7.
[16]
Jung J H , Cheon D S , Liu F , Lee K B , Seo T S . Angewandte Chemie International Edition, 2010, 49( 33): 5708.
[17]
Arshak K , Velusamy V , Korostynska O , Oliwa S K , Adley C . IEEE Sensors Journal, 2009, 9( 12): 1942.
[18]
Ebrahimi M M S , Laabei M , Jenkins A T A , Schönherr H . Macromolecular Rapid Communications, 2015, 36( 24): 2123.
[19]
徐溢( Xu Y ), 车玉兰( Che Y L ), 王人杰( Wang R J ), 崔飞云( Cui Y F ), 赵斌( Zhao B ), 李泽全( Li Z Q ). CN106191199B.
[20]
Ulijn R V , Bibi N , Jayawarna V , Thornton P D , Todd S J , Mart R J , Smith A M , Gough J E . Materials Today, 2007, 10( 4): 40.
[21]
Ullah F , Othman M B H , Javed F , Ahmad Z , Akil H M . Materials Science & Engineering C, 2015, 57: 414.
[22]
Ahmed E M. Journal of Advanced Research, 2015, 6( 2): 105.
[23]
Rasmussen K , Østgaard K . Water Research, 2003, 37( 3): 519.
[24]
Shaibani P M , Jiang K , Haghighat G , Hassanpourfard M , Etayash H , Naicker S , Thundat T . Sensors & Actuators: B Chemical, 2016, 226: 176.
[25]
Fletcher M , Loeb G I . Applied and Environmental Microbiology, 1979, 37( 1): 67.
[26]
Cook A D , Sagers R D , Pitt W G . Journal of Biomedical Materials Research, 1993, 27( 1): 119.
[27]
Kalaji M , Neal A L . Biopolymers, 2000, 57( 1): 43.
[28]
Kolewe K W , Peyton S R , Schiffman J D . ACS Applied Materials & Interfaces, 2015, 7( 35): 19562.
[29]
Kolewe K W , Zhu J , Mako N R , Nonnenmann S S , Schiffman J D . ACS Applied Materials & Interfaces, 2018, 10( 3): 2275.
[30]
Yu Q , Cho J , Shivapooja P , Ista L K , López G P . ACS Applied Materials & Interfaces, 2013, 5( 19): 9295.
[31]
Wang Q , Feng Y , He M , Huang Y , Zhao W , Zhao C . Macromolecular Materials and Engineering, 2018, 303( 5): 1700590.
[32]
Khan M S , Misra S K , Dighe K , Wang Z , Schwartz-Duval A S , Sar D , Pan D . Biosensors and Bioelectronics, 2018, 110: 132.
[33]
He M , Wang Q , Zhang J , Zhao W , Zhao C . ACS Applied Materials & Interfaces, 2017, 9( 51): 44782.
[34]
Wei T , Yu Q , Zhan W , Chen H . Advanced Healthcare Materials, 2016, 5( 4): 449.
[35]
Wu J , Zhao S , Xu S , Pang X , Cai G , Wang J . Journal of Materials Chemistry B, 2018, 6( 45): 7462.
[36]
Shaibani P M , Etayash H , Jiang K , Sohrabi A , Hassanpourfard M , Naicker S , Sadrzadeh M , Thundat T . ACS Sensors, 2018, 3( 4): 815.
[37]
Xiong H , Zheng H , Wang W , Wang S , Liang J , Wen W , Zhang X . Biosensors and Bioelectronics, 2016, 86: 164.
[38]
Sadat E M M , Steinhoff B , Schönherr H . European Polymer Journal, 2015, 72: 180.
[39]
Sadat E M M , Dohm N , Müller M , Jansen B , Schönherr H . European Polymer Journal, 2016, 81: 257.
[40]
Jia Z , Müller M , Schönherr H . Macromolecular Symposia, 2018, 379( 1): 1600178.
[41]
Bhattacharya S , Nandi S , Jelinek R . RSC Advances, 2017, 7( 2): 588.
[42]
Gunda N S K , Chavali R , Mitra S K . The Analyst, 2016, 141( 10): 2920.
[43]
Wan Y , Lin Z , Zhang D , Wang Y , Hou B . Biosensors and Bioelectronics, 2011, 26( 5): 1959.
[44]
Xiang C , Li R , Li Y , Adhikari B , She Z , Kraatz H B . Talanta, 2015, 140: 122.
[45]
Massad-Ivanir N , Shtenberg G , Zeidman T , Segal E . Advanced Functional Materials, 2010, 20( 14): 2269.
[46]
Cai Z , Kwak D H , Punihaole D , Hong Z , Velankar S S , Liu X , Asher S A . Angewandte Chemie International Edition, 2015, 54( 44): 13036.
[47]
Hao N , Zhang Y , Zhang X , Zhou Z , Hua R , Liu Q , Qian J , Li H , Wang K . Biosensors and Bioelectronics, 2017, 97: 377.
[48]
Hua R , Hao N , Lu J , Qian J , Liu Q , Li H , Wang K . Biosensors and Bioelectronics, 2018, 106: 57.
[49]
Tian L , Jiang Q , Liu K K , Luan J , Naik R R , Singamaneni S . Advanced Materials Interfaces, 2016, 3( 15): 1.
[50]
Yu Z , Lu Z , Huang Y , Li M , Wang W , Liu K , Wang D . Chemical Communications, 2018, 54( 57): 7920.
[51]
Zhou W , Le J , Chen Y , Cai Y , Hong Z , Chai Y . Trends in Analytical Chemistry, 2019, 112: 175.
[52]
Braschler T , Johann R , Heule M , Metref L , Renaud P . Lab on a Chip, 2005, 5( 5): 553.
[53]
Lee C J , Jung J H , Seo T S . Analytical Chemistry, 2012, 84( 11): 4928.
[54]
Li Y , Yan X , Feng X , Wang J , Du W , Wang Y , Chen P , Xiong L , Liu B F . Analytical Chemistry, 2014, 86( 21): 10653.
[1] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[4] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[7] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[8] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[9] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[10] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[11] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[12] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[13] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[14] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[15] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.