中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1964-1971 DOI: 10.7536/PC201062 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Review •

Preparation and Application of MOFs/ Hydrogel Composites

Chao Li1, Yaoyu Qiao1, Yuhong Li1, Jing Wen1, Naipu He1,2(), Baiyu Li1   

  1. 1 School of Chemical and Biological Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China
    2 Research Institute, Lanzhou Jiaotong University,Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Contact: Naipu He
  • Supported by:
    National Natural Science Foundation of China(51963014)
Richhtml ( 217 ) PDF ( 2101 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks(MOFs) have a large number of pore structures and active sites, which enable them to play a huge role in gas adsorption, catalysis, medical treatment and other fields. As a crystal powder, MOFs are brittleness, easy hydroxylation, difficulty in recycling and so on which limits its application. MOFs combining to flexible polymers, in particular combining to hydrogels greatly improve the flexibility, dispersibility in water, recyclability, and processability of composite materials, which broadens the application fields of MOFs. In the present paper, it is elaborated that the progress of the preparation of MOFs/hydrogel composites are based on three different methods including MOFs in situ growing from hydrogel, MOFs/hydrogel simultaneous generation, and hydrogel encapsulated MOFs. The characteristics of the above three preparation methods and their resulting product properties are summarized. Additionally, the applications of composite materials in biomedicine, catalysis, wastewater treatment, and gas adsorption are further summarized. Finally, preparation method improvement and future application of MOFs/ hydrogel composites are discussed and prospected.

Contents

1 Introduction

2 Preparation of MOFs/hydrogel composites

2.1 MOFs in situ growing from hydrogel

2.2 MOFs/hydrogel simultaneous generation

2.3 Hydrogel encapsulated MOFs

3 Application of MOFs/hydrogel composites

3.1 Biomedical applications

3.2 Catalysis

3.3 Wastewater treatment

3.4 CO2 adsorption

4 Conclusion and outlook

Fig. 1 MOFs/hydrogel preparation process(A): MOFs in situ growing from hydrogel (B): MOFs/hydrogel simultaneous generation (C): Hydrogel encapsulated MOFs
Fig. 2 (A) Schematic of the preparation of MOF-alginate composite; Photographs of(B) alginate hydrogels cross-linked by Cu2+ right after the addition of sodium alginate aqueous solution into Cu2+ aqueous solution;(C) alginate hydrogels cross-linked by Cu2+ after washed with water and ethanol; and(D) HKUST-1-alginate hydrogels[27]
Fig. 3 Schematics of the chemical composition and 3D printing process for the MOF hydrogel structures.(A) Composition of the hydrogel precursor ink(left), UV-cured hydrogel matrix(middle), and the HKUST-1 hydrogel(right);(B) Schematic showing the three critical steps in the 3D printing process including printing, UV curing, and ionic cross-linking[31]
Fig. 4 Preparation of HKUST-1 and hybrid hydrogel[36]
[1]
Xue Y Q, Zheng S S, Xue H G, Pang H. J. Mater. Chem. A, 2019, 7(13): 7301.

doi: 10.1039/C8TA12178H
[2]
Ma S Q, Sun D F, Simmons J M, Collier C D, Yuan D Q, Zhou H C. J. Am. Chem. Soc., 2008, 130(3): 1012.

doi: 10.1021/ja0771639
[3]
Wang W J, Yuan D Q. Sci. Rep., 2014, 4(1): 1.
[4]
Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáek M, Garcia H, Čejka J. Catal. Sci. Technol., 2013, 3(2): 500.

doi: 10.1039/C2CY20586F
[5]
Llabrés i, Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250(2): 294.

doi: 10.1016/j.jcat.2007.06.004
[6]
Yadav A, Kanoo P. Chem. Asian J., 2019, 14(20): 3531.

doi: 10.1002/asia.v14.20
[7]
Pan L, Olson D H, Ciemnolonski L R, Heddy R, Li J. Angew. Chem. Int. Ed., 2006, 45(4): 616.
[8]
Wu Y N, Zhou M M, Li S, Li Z H, Li J, Wu B Z, Li G T, Li F T, Guan X H. Small, 2014, 10(14): 2927.

doi: 10.1002/smll.201400362
[9]
Park K M, Kim H, Murray J, Koo J, Kim K. Supramol. Chem., 2017, 29(6): 441.

doi: 10.1080/10610278.2016.1266359
[10]
Chen Y F, Li S Q, Pei X K, Zhou J W, Feng X, Zhang S H, Cheng Y Y, Li H W, Han R D, Wang B. Angew. Chem. Int. Ed., 2016, 55(10): 3419.

doi: 10.1002/anie.201511063
[11]
Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C. Coord. Chem. Rev., 2019, 398: 213016.
[12]
Mohamed A K, Mahmoud M E. Carbohydr. Polym., 2020, 245: 116438.
[13]
Han D, Li Y, Liu X, Li B, Han Y, Zheng Y, Yeung K W K, Li C, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Chem. Eng. J., 2020, 396: 125194.
[14]
Lu G D, Yan Q Z, Su X T, Liu Z Q, Ge C C. Prog. Chem., 2007, 19(4): 485.
(卢国冬, 燕青芝, 宿新泰, 刘中清, 葛昌纯. 化学进展, 2007, 19(4): 485.)
[15]
Yu Q L, Li Z, Dou C Y, Zhao Y P, Gong J X, Zhang J F. Prog.Chem., 2020, 32(2/3): 179.
(于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32(2/3): 179.)

doi: 10.7536/PC190802
[16]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.

doi: 10.1021/cr5002589
[17]
Ge L, Wu B, Wang X, Zhao Z, Xu T W. CIESC J., 2019, 70(10): 3748.
(葛亮, 伍斌, 王鑫, 赵璋, 徐铜文. 化工学报, 2019, 70(10): 3748.)
[18]
Yao J F, Chen R Z, Wang K, Wang H T. Microporous Mesoporous Mater., 2013, 165: 200.

doi: 10.1016/j.micromeso.2012.08.018
[19]
Bai Z Y, Liu Q, Zhang H S, Yu J, Chen R R, Liu J Y, Song D L, Li R M, Wang J. ACS Appl. Mater. Interfaces, 2020, 12(15): 18012.

doi: 10.1021/acsami.0c03007
[20]
Yamamoto M, Ikada Y, Tabata Y. J. Biomater. Sci. Polym. Ed., 2001, 12(1): 77.

doi: 10.1163/156856201744461
[21]
Pal K, Banthia A K, Majumdar D K. AAPS Pharmscitech, 2007, 8(1): E142.

doi: 10.1208/pt080121
[22]
Garai A, Shepherd W, Huo J, Bradshaw D. J. Mater. Chem. B, 2013, 1(30): 3678.

doi: 10.1039/c3tb20814a
[23]
Maan O, Song P, Chen N X, Lu Q Y. Adv. Mater. Interfaces, 2019, 6(10): 1970062.
[24]
Zhang H, Omer A M, Hu Z H, Yang L Y, Ji C, Ouyang X K. Int. J. Biol. Macromol., 2019, 135: 490.

doi: S0141-8130(19)31949-X pmid: 31145956
[25]
Hecht H, Srebnik S. Biomacromolecules, 2016, 17(6): 2160.

doi: 10.1021/acs.biomac.6b00378
[26]
Zhang X L, Wang L L, Weng L, Deng B Y. J. Appl. Polym. Sci., 2020, 137(16): 48571.

doi: 10.1002/app.v137.16
[27]
Zhu H, Zhang Q, Zhu S P. ACS Appl. Mater. Interfaces, 2016, 8(27): 17395.

doi: 10.1021/acsami.6b04505
[28]
Yu Y R, Fu F F, Shang L R, Cheng Y, Gu Z Z, Zhao Y J. Adv. Mater., 2017, 29(18): 1605765.
[29]
Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga Y T, Shimoyama Y, Takeuchi S. Nat. Mater., 2013, 12(6): 584.

doi: 10.1038/nmat3606
[30]
Yunru Y, Guopu C, G J, Liu Y, Ren J, Kong T, Zhao Y. Mater. Horiz., 2018, 5:1137.

doi: 10.1039/C8MH00647D
[31]
Liu W Q, Erol O, Gracias D H. ACS Appl. Mater. Interfaces, 2020, 12(29): 33267.

doi: 10.1021/acsami.0c08880
[32]
Zhuang Y, Kong Y, Wang X C, Shi B Y. New J. Chem., 2019, 43(19): 7202.

doi: 10.1039/c8nj06031b
[33]
Neufeld L, Bianco-Peled H. Int. J. Biol. Macromol., 2017, 101: 852.

doi: S0141-8130(16)30783-8 pmid: 28366853
[34]
He N P, Chen X N, Wen J, Cao Q, Li Y H, Wang L. ACS Omega, 2019, 4(25): 21018.

doi: 10.1021/acsomega.9b02325
[35]
Jiang S, Liu S, Feng W H. J. Mech. Behav. Biomed. Mater., 2011, 4(7): 1228.

doi: 10.1016/j.jmbbm.2011.04.005 pmid: 21783131
[36]
Zhu Q, Li Y T, Wang W, Sun G, Yan K L, Wang D. Compos. Commun., 2018, 10: 36.

doi: 10.1016/j.coco.2018.05.005
[37]
Yao X X, Zhu G S, Zhu P G, Ma J, Chen W W, Liu Z, Kong T T. Adv. Funct. Mater., 2020, 30(13): 1909389.
[38]
Ren S Z, Li C H, Tan Z L, Hou Y, Jia S R, Cui J D. J. Agric. Food Chem., 2019, 67(12): 3372.

doi: 10.1021/acs.jafc.8b06182
[39]
Supuran C T. Future Med. Chem., 2018, 10(5): 561.

doi: 10.4155/fmc-2017-0223
[40]
Angeli A, Tanini D, Nocentini A, Capperucci A, Ferraroni M, Gratteri P, Supuran C T. Chem. Commun., 2019, 55(5): 648.

doi: 10.1039/C8CC08562E
[41]
Chen Y, Luo L, Zhang S G, Ding R, Zhou J, Yang C. J. Coord. Chem., 2020, 73(9): 1450.

doi: 10.1080/00958972.2020.1786886
[42]
Kalantari K, Mostafavi E, Afifi A M, Izadiyan Z, Jahangirian H, Rafiee-Moghaddam R, Webster T J. Nanoscale, 2020, 12(4): 2268.

doi: 10.1039/c9nr08234d pmid: 31942896
[43]
Xu Q M, Zheng Z Q, Wang B, Mao H L, Yan F. ACS Appl. Mater. Interfaces, 2017, 9(17): 14656.

doi: 10.1021/acsami.7b01677
[44]
Aryanejad S, Bagherzade G, Moudi M. New J. Chem., 2020, 44(4): 1508.

doi: 10.1039/C9NJ04977K
[45]
Huang P, Yan L F. Chin. J. Chem. Phys., 2016, 29(6): 742.

doi: 10.1063/1674-0068/29/cjcp1604073
[46]
Fang Y X, Zhang L X, Zhao Q Q, Wang X L, Jia X. Chem. Pap., 2019, 73(6): 1401.

doi: 10.1007/s11696-019-00692-2
[47]
Zhang P Y, Wu Z, Zhang G M, Zeng G M, Zhang H Y, Li J, Song X G, Dong J H. Sep. Purif. Technol., 2008, 63(3): 642.

doi: 10.1016/j.seppur.2008.07.008
[48]
Liu H, Guo P, Regueira T, Wang Z H, Du J F, Chen G J. J. Phys. Chem. C, 2016, 120(24): 13287.

doi: 10.1021/acs.jpcc.6b03772
[49]
Ma X C, Li L Q, Wang S B, Lu M M, Li H L, Ma W W, Keener T C. Appl. Surf. Sci., 2016, 369: 390.

doi: 10.1016/j.apsusc.2016.01.274
[50]
Madden D G, Scott H S, Kumar A, Chen K J, Sanii R, Bajpai A, Lusi M, Curtin T, Perry J J, Zaworotko M J. Phil. Trans. R. Soc. A., 2017, 375(2084): 20160025.
[51]
Gong X, Wang Y J, Kuang T R. ACS Sustainable Chem. Eng., 2017, 5(12): 11204.

doi: 10.1021/acssuschemeng.7b03613
[52]
Wen J, Li Y H, Wang L, Chen X N, Cao Q, He N P. Prog.Chem., 2020, 32(4): 417.
(闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 化学进展, 2020, 32(4): 417.)

doi: 10.7536/PC190713
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[6] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[7] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[8] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[9] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[10] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[11] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[12] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.