中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 642-655 DOI: 10.7536/PC190828 Previous Articles   Next Articles

• Review •

Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment

Yang Liu1, Xinbo Zhang1, Yingcan Zhao2,3,**()   

  1. 1.School of Environmental and Municipal Engineering, Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384,China
    2.Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    3.Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Contact: Yingcan Zhao
  • About author:
  • Supported by:
    Guangdong Provincial Natural Science Foundation of China(2018A030313984); Shenzhen Municipal Science and Technology Innovation Council of Shenzhen Government(JCYJ20170818093844118); Shenzhen Municipal Science and Technology Innovation Council of Shenzhen Government(JCYJ20190809151215588); Tianjin Key Laboratory of Aquatic Science and Technology(TJKLAST-PT-2018-5)
Richhtml ( 80 ) PDF ( 1930 ) Cited
Export

EndNote

Ris

BibTeX

The rapid development of nanomaterials and nanotechnology provides the water treatment new opportunities. MoS2, as a graphene-like two dimensional(2D) nanomaterial, has attracted much attention due to its unique 2D sheet structure as well as physical and chemical properties. In this paper, we review the applications of 2D MoS2 and its composites on adsorption, membrane separation, catalysis, antibacterial, and detection applications in water treatment area, of which adsorption and membrane separation are highlighted and discussed to achieve the goal of high removal efficiency of ions, dyes, antibiotics, bacteria and many other environmental pollutants. In the end, the applications of MoS2 and its composites in water treatment are evaluated, and their potential development and faced challenges are discussepd, hopefully to be a novel nanomaterial and technical strategy to solve water environmental pollution and water resource shortage problems.

Contents

1 Introduction

2 Preparation of two-dimensional MoS2 nanomaterials

3 MoS2-based adsorbents in water treatment

3.1 Removal of heavy metal ions

3.2 Removal of organic dyes

3.3 Removal of other pollutants

4 MoS2-based membranes in water treatment

4.1 Nanoporous MoS2 membranes

4.2 Layer-stacked MoS2 membranes

4.3 Membranes modified with MoS2 nanosheets

5 MoS2-based nanomaterials on catalytic degradation in water treatment

6 MoS2-based antibacterial nanomaterials in water treatment

7 MoS2-based nanomaterials on detection in water treatment

8 Conclusion and outlook

Fig. 1 Structure of MoS2[4] (a) 3D illustration;(b) the 2H phase;(c) the 1T phase. Copyright 2017, ACS
Fig. 2 Simulation box and different pore architectures[76]. (a) Schematic of the simulation box consisting of a MoS2 sheet(molybdenum in blue and sulfur in yellow), water(transparent blue), ions(in red and green) and a graphene sheet(in gray).(b) Left: Moonly pore type. Right: S only pore type. Bottom: mixed pore type. Copyright 2015, Springer Nature
Fig. 3 Performance and mechanism of MoS2 membranes in rejection of ionic species and organic dyes[12]. (a) The steady water permeance of a 500 nm thick MoS2 membrane in filtering water and salt solutions(20 and 200 mM NaCl);(b) Effects of solute charge and ionic strength of solutions on the rejection of ionic species;(c) The concentrations of organic dye(rhodamine-WT) in permeate, feed, and retentate, as evidenced by the absorption spectra. The inset optical image shows the nearly colorless permeate and concentrated retentate, as compared to the feed solution;(d) Dependency of organic dye rejection on MoS2 membrane thickness;(e) The proposed mechanisms of MoS2 membranes include both size exclusion and electrostatic repulsion. Copyright 2017, ACS
Table 1 The separation performance of layer-stacked MoS2 membranes
Fig. 4 Schematic that shows the FLV-MoS2 inactivating bacteria in water through visible-light photocatalytic ROS generation[15]
[1]
Richard Connor. Nature-based Solutions for Water, [2018-03-19]. . https://www.unwater.org/publications/world-water-development-report-2018/
[2]
Geim A K, Novoselov K S. Nat. Mater., 2007,6:183. https://doi.org/10.1038/nmat1849

doi: 10.1038/nmat1849
[3]
Perreault F, Faria A F, Elimelech M. Chem. Soc. Rev., 2015,44(16):5861. http://xlink.rsc.org/?DOI=C5CS00021A

doi: 10.1039/C5CS00021A
[4]
Wang Z, Mi B. Environ. Sci. Technol., 2017,51(15):8229. https://pubs.acs.org/doi/10.1021/acs.est.7b01466

doi: 10.1021/acs.est.7b01466
[5]
Deng M, Kwac K, Li M, Jung Y, Park H G. Nano Lett., 2017,17(4):2342. https://pubs.acs.org/doi/10.1021/acs.nanolett.6b05238

doi: 10.1021/acs.nanolett.6b05238
[6]
Sun L, Huang H, Peng X. Chem. Commun., 2013,49(91):10718. http://xlink.rsc.org/?DOI=c3cc46136j

doi: 10.1039/c3cc46136j
[7]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011,6(3):147. https://doi.org/10.1038/nnano.2010.279

doi: 10.1038/nnano.2010.279
[8]
Ataca C, Şahin H, Ciraci S. J. Phys. Chem. C, 2012,116(16):8983. https://pubs.acs.org/doi/10.1021/jp212558p

doi: 10.1021/jp212558p
[9]
宋晓琳(Song, X L), 陈贵锋(Chen G F), 关丽秀(Guan L X), 任慧(Ren H), 陈士强(Chen S Q), . 中国材料进展 (Materials China), 2017,36(12):929.
[10]
Tang Q, Jiang D E. Chem. Mat., 2015,27(10):3743. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00986

doi: 10.1021/acs.chemmater.5b00986
[11]
Jia F, Wang Q, Wu J, Li Y, Song S. ACS Sustain. Chem. Eng., 2017,5(8):7410. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01880

doi: 10.1021/acssuschemeng.7b01880
[12]
Wang Z, Tu Q, Zheng S, Urban J J, Li S, Mi B. Nano Lett., 2017,17(12):7289. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b02804

doi: 10.1021/acs.nanolett.7b02804
[13]
Zhang X, Zhang W, Liu L, Yang M, Huang L, Chen K, Wang R, Yang B, Zhang D, Wang J, Nanotechnology, 2017,28(22):225101. https://iopscience.iop.org/article/10.1088/1361-6528/aa6c9b

doi: 10.1088/1361-6528/aa6c9b
[14]
Pandit S, Karunakaran S, Boda S K, Basu B, De M, ACS Appl. Mater. Interfaces, 2016,8(46):31567. https://pubs.acs.org/doi/10.1021/acsami.6b10916

doi: 10.1021/acsami.6b10916
[15]
Liu C, Kong D, Hsu P C, Yuan H, Lee H W, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini P A, Parker K M, Boehm A B, Cui Y. Nat. Nanotechnol., 2016,11(12):1098. https://doi.org/10.1038/nnano.2016.138

doi: 10.1038/nnano.2016.138
[16]
Frindt R F. J. Appl. Phys., 1966,37(4):1928.
[17]
Gan X, Zhao H, Quan X. Biosens. Bioelectron., 2017,89(1):56. https://linkinghub.elsevier.com/retrieve/pii/S0956566316302378

doi: 10.1016/j.bios.2016.03.042
[18]
Jonathan M L, Coleman N, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V, Science, 2011,311.
[19]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett., 2011,11(12):5111. https://pubs.acs.org/doi/10.1021/nl201874w

doi: 10.1021/nl201874w
[20]
Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng H H, Zhang H. Angew. Chem.-Int. Edit., 2012,51(36):9052. http://doi.wiley.com/10.1002/anie.201204208

doi: 10.1002/anie.201204208
[21]
Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran F R, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. Nat. Chem., 2018,10(6):638. https://doi.org/10.1038/s41557-018-0035-6

doi: 10.1038/s41557-018-0035-6
[22]
Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013,135(16):5998. https://pubs.acs.org/doi/10.1021/ja4019572

doi: 10.1021/ja4019572
[23]
Chang K, Hai X, Pang H, Zhang H, Shi L, Liu G, Liu H, Zhao G, Li M, Ye J. Adv. Mater., 2016,28(45):10033. http://doi.wiley.com/10.1002/adma.201603765

doi: 10.1002/adma.201603765
[24]
Shu Y, Zhang W, Cai H, Yang Y, Yu X, Gao Q. Nanoscale, 2019,11(14):6644. http://xlink.rsc.org/?DOI=C9NR00333A

doi: 10.1039/C9NR00333A
[25]
Li X, Zhu H. Journal of Materiomics, 2015,1(1):33. https://linkinghub.elsevier.com/retrieve/pii/S2352847815000040

doi: 10.1016/j.jmat.2015.03.003
[26]
Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J. J. Hazard. Mater., 2015,297:251. https://linkinghub.elsevier.com/retrieve/pii/S0304389415003660

doi: 10.1016/j.jhazmat.2015.04.068
[27]
Wan S, He F, Wu J, Wan W, Gu Y, Gao B. J. Hazard. Mater., 2016,314:32. https://linkinghub.elsevier.com/retrieve/pii/S0304389416303557

doi: 10.1016/j.jhazmat.2016.04.014
[28]
Sun Y, Shao D, Chen C, Yang S, Wang X. Environ. Sci. Technol., 2013,47(17):9904. https://pubs.acs.org/doi/10.1021/es401174n

doi: 10.1021/es401174n
[29]
Liu C, Jia F, Wang Q, Yang B, Song S. Appl. Mater. Today, 2017,9:220.
[30]
Ai K, Ruan C, Shen M, Lu L. Adv. Funct. Mater., 2016,26(30):5542. http://doi.wiley.com/10.1002/adfm.201601338

doi: 10.1002/adfm.201601338
[31]
Xie J F, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013,135:17881. https://pubs.acs.org/doi/10.1021/ja408329q

doi: 10.1021/ja408329q
[32]
Xie J F, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W. Adv. Mater., 2013,25(40):5807. http://doi.wiley.com/10.1002/adma.v25.40

doi: 10.1002/adma.v25.40
[33]
Yi H, Zhang X, Jia F, Wei Z, Zhao Y, Song S. Appl. Surf. Sci., 2019,483:521. https://linkinghub.elsevier.com/retrieve/pii/S0169433219309894

doi: 10.1016/j.apsusc.2019.03.350
[34]
Song Y, Lu M, Huang B, Wang D, Wang G, Zhou L. J. Alloy. Compd., 2018,737:113. https://linkinghub.elsevier.com/retrieve/pii/S0925838817342706

doi: 10.1016/j.jallcom.2017.12.087
[35]
Wang Q, Peng L, Gong Y, Jia F, Song S, Li Y. J. Mol. Liq., 2019,282:598. https://linkinghub.elsevier.com/retrieve/pii/S0167732219309857

doi: 10.1016/j.molliq.2019.03.052
[36]
Zhu H, Tan X, Tan L, Chen C, Alharbi N S, Hayat T, Fang M, Wang X. ACS Applied Nano Materials, 2018,1(6):2689. https://pubs.acs.org/doi/10.1021/acsanm.8b00388

doi: 10.1021/acsanm.8b00388
[37]
Du Y, Wang J, Zou Y, Yao W, Hou J, Xia L, Peng A, Alsaedi A, Hayat T, Wang X. Sci. Bull., 2017,62(13):913. https://linkinghub.elsevier.com/retrieve/pii/S2095927317302864

doi: 10.1016/j.scib.2017.05.025
[38]
Wang Q, Yang L, Jia F, Li Y, Song S, J. Mol. Liq., 2018,263:526. https://linkinghub.elsevier.com/retrieve/pii/S0167732217355885

doi: 10.1016/j.molliq.2018.04.149
[39]
Yin W, Dong X, Yu J, Pan J, Yao Z, Gu Z, Zhao Y. ACS Appl. Mater. Interfaces, 2017,9(25):21362. https://pubs.acs.org/doi/10.1021/acsami.7b04185

doi: 10.1021/acsami.7b04185
[40]
Gao Y, Chen C, Tan X, Xu H, Zhu K. J. Colloid Interface Sci., 2016,476:62. https://linkinghub.elsevier.com/retrieve/pii/S0021979716303071

doi: 10.1016/j.jcis.2016.05.022
[41]
Huang Q, Liu M Y, Li Y, Ruan J Y. J. Taiwan Inst. Chem. Eng., 2018,86:174. https://linkinghub.elsevier.com/retrieve/pii/S1876107017306685

doi: 10.1016/j.jtice.2017.12.027
[42]
Wang J, Wang P, Wang H, Dong J, Chen W, Wang X., Wang S, Hayat T, Alsaedi A, Wang X. ACS Sustain. Chem. Eng., 2017,5(8):7165. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01347

doi: 10.1021/acssuschemeng.7b01347
[43]
Liu Y, Gu P, Jia L, Zhang G. J. Hazard. Mater., 2016,302:82. https://linkinghub.elsevier.com/retrieve/pii/S030438941530100X

doi: 10.1016/j.jhazmat.2015.09.045
[44]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D. J. Hazard. Mater., 2018,354:191. https://linkinghub.elsevier.com/retrieve/pii/S0304389418303443

doi: 10.1016/j.jhazmat.2018.05.005
[45]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D. J. Hazard. Mater., 2018,354:191. https://linkinghub.elsevier.com/retrieve/pii/S0304389418303443

doi: 10.1016/j.jhazmat.2018.05.005
[46]
Li Y, Zou G, Yang S, Wang Z, Chen T, Yu X, Guo Q, He R, Duan T, Zhu W. Chem. Eng. J., 2019,364:139. https://linkinghub.elsevier.com/retrieve/pii/S1385894719301895

doi: 10.1016/j.cej.2019.01.169
[47]
Li H, Xie F, Li W, Fahlman B D, Chen M, Li W. RSC Adv., 2016,6(107):105222. http://xlink.rsc.org/?DOI=C6RA22414H

doi: 10.1039/C6RA22414H
[48]
Massey A T, Gusain R, Kumari S, Khatri O P. Ind. Eng. Chem. Res., 2016,55(26):7124. https://pubs.acs.org/doi/10.1021/acs.iecr.6b01115

doi: 10.1021/acs.iecr.6b01115
[49]
Li Z, Meng X, Zhang Z. Mater. Res. Bull., 2019,111:238. https://linkinghub.elsevier.com/retrieve/pii/S0025540818327053

doi: 10.1016/j.materresbull.2018.11.012
[50]
Xie H, Xiong X. Journal of Environmental Chemical Engineering, 2017,5(1):1150. https://linkinghub.elsevier.com/retrieve/pii/S2213343717300441

doi: 10.1016/j.jece.2017.01.044
[51]
Mehta D, Mazumdar S, Singh S K. J. Water Process. Eng., 2015,7:244. https://linkinghub.elsevier.com/retrieve/pii/S221471441530026X

doi: 10.1016/j.jwpe.2015.07.001
[52]
Song H J, You S, Jia X H, Yang J. Ceram. Int., 2015,41(10):13896. https://linkinghub.elsevier.com/retrieve/pii/S0272884215015485

doi: 10.1016/j.ceramint.2015.08.023
[53]
Song H, You S, Jia X. J. Mater. Sci.-Mater. Electron., 2016,27(10):10841. http://link.springer.com/10.1007/s10854-016-5191-0

doi: 10.1007/s10854-016-5191-0
[54]
Chen P, Liu X, Jin R, Nie W, Zhou Y. Carbohydr. Polym., 2017,167:36. https://linkinghub.elsevier.com/retrieve/pii/S0144861717302242

doi: 10.1016/j.carbpol.2017.02.094
[55]
肖蓝(Xiao L), 王祎龙(Wang Y L), 于水利(Yu S L), 唐玉霖(Tang Y L). 化学进展 (Progress in Chemistry), 2013,25(2/3):419.
[56]
Chao Y, Yang L, Ji H, Zhu W, Pang J, Han C, Li H. Environ. Prog. Sustain. Energy, 2017,36(3):815. http://doi.wiley.com/10.1002/ep.v36.3

doi: 10.1002/ep.v36.3
[57]
Chao Y, Zhu W, Wu X, Hou F, Xun S, Wu P, Ji H, Xu H, Li H. Chem. Eng. J., 2014,243:60. https://linkinghub.elsevier.com/retrieve/pii/S138589471301629X

doi: 10.1016/j.cej.2013.12.048
[58]
Dong Y, Huang C, Yang X Y. Chem. Eng. J., 2019,361:322. https://linkinghub.elsevier.com/retrieve/pii/S1385894718324938

doi: 10.1016/j.cej.2018.12.019
[59]
Wan Z T, Chen S D, Song K, Yua P, Zhao N, Ouyang X P. Colloid Surf. A-Physicochem. Eng. Asp., 2018,546:237. https://linkinghub.elsevier.com/retrieve/pii/S0927775718301870

doi: 10.1016/j.colsurfa.2018.03.017
[60]
Krasian T, Punyodom W, Worajittiphon P. Chem. Eng. J., 2019,369:563. https://linkinghub.elsevier.com/retrieve/pii/S138589471930556X

doi: 10.1016/j.cej.2019.03.092
[61]
张文涛(Zhang W T). 西北农林科技大学博士论文( Doctoral Dissertation of Northwest A&F University), 2018.
[62]
赵凤阳(Zhao F Y), 姜永健(Jiang Y J), 刘涛(Liu T), 叶纯纯(Ye C C). 化学进展 (Progress in Chemistry), 2018,30(7):1013.
[63]
Mi B. Science, 2014,343:740. https://www.sciencemag.org/lookup/doi/10.1126/science.1250247

doi: 10.1126/science.1250247
[64]
Mi B. Science, 2019,364(6445):1033. https://www.sciencemag.org/lookup/doi/10.1126/science.aax3103

doi: 10.1126/science.aax3103
[65]
王茜(Wang Q), 郭晓燕(Guo X Y), 邵怀启(Shao H Q), 周启星(Zhou Q X), 胡万里(Hu W L). 化学进展 (Progress in Chemistry), 2015,10:1470. http://www.progchem.ac.cn//CN/abstract/abstract11600.shtml

doi: 10.7536/PC150321
[66]
Hu M, Mi B. Environ. Sci. Technol., 2013,47(8):3715. https://pubs.acs.org/doi/10.1021/es400571g

doi: 10.1021/es400571g
[67]
Li Y, Yang S, Zhang K, Bruggen B V. Desalination, 2019,454:48. https://linkinghub.elsevier.com/retrieve/pii/S0011916418311950

doi: 10.1016/j.desal.2018.12.016
[68]
Dervin S, Dionysiou D D, Pillai S C. Nanoscale, 2016,8(33):15115. http://xlink.rsc.org/?DOI=C6NR04508A

doi: 10.1039/C6NR04508A
[69]
Sun J, Chen Y, Hu C, Liu H, Qu J. Chemosphere, 2019,222(2):156. https://linkinghub.elsevier.com/retrieve/pii/S0045653519301389

doi: 10.1016/j.chemosphere.2019.01.129
[70]
Zhu J, Hou J, Uliana A, Zhang Y, Tian M, Bruggen B V. J. Mater. Chem. A, 2018,6(9):3773. http://xlink.rsc.org/?DOI=C7TA10814A

doi: 10.1039/C7TA10814A
[71]
Liu G, Jin W, Xu N. Angew. Chem.-Int. Edit., 2016,55(43):13384. http://doi.wiley.com/10.1002/anie.201600438

doi: 10.1002/anie.201600438
[72]
刘阳(Liu Y), 顾平(Gu P), 张光辉(Zhang G H). 化工进展 (Chemical Industry and Engineering Progress), 2017,36(11):4151.
[73]
万武波(Wan W B), 纪冉(Ji R), 何锋(He F). 化学进展 (Progress in Chemistry), 2017,29(8):833.
[74]
Lee C, Wei X, Kysar J W, Hone J. Science, 2008,321(5887):385. https://www.sciencemag.org/lookup/doi/10.1126/science.1157996

doi: 10.1126/science.1157996
[75]
Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015,321(5887):459.
[76]
Heiranian M, Farimani A B, Aluru N R. Nat. Commun., 2015,6:8616. https://doi.org/10.1038/ncomms9616

doi: 10.1038/ncomms9616
[77]
Kou J, Yao J, Wu L, Zhou X, Lu H, Wu F, Fan J. Phys. Chem. Chem. Phys., 2016,18(32):22210. http://xlink.rsc.org/?DOI=C6CP01967F

doi: 10.1039/C6CP01967F
[78]
Azamat J, Khataee A. Comput. Mater. Sci., 2017,137:201. https://linkinghub.elsevier.com/retrieve/pii/S0927025617302835

doi: 10.1016/j.commatsci.2017.05.043
[79]
Azamat J, Khataee A, Sadikoglu F. J. Mol. Liq., 2018,249:110.
[80]
Köhler M H, Bordin J R, Barbosa M C. J. Chem. Phys., 2018,148(22):222804. http://aip.scitation.org/doi/10.1063/1.5013926

doi: 10.1063/1.5013926
[81]
Lu N, Wang J, Floresca H C, Kim M J. Carbon, 2012,50(8):2961. http://dx.doi.org/10.1016/j.carbon.2012.02.078

doi: 10.1016/j.carbon.2012.02.078
[82]
Lemme M C, Williams J R, Lewis A. ACS Nano, 2009,3:2674. https://pubs.acs.org/doi/10.1021/nn900744z

doi: 10.1021/nn900744z
[83]
Thiruraman J P, Fujisawa K, Danda G, Das P M, Zhang T, Bolotsky A, Lopez N P, Nicolai A, Senet P, Terrones M, Drndic M. Nano Lett., 2018,18(3):1651. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b04526

doi: 10.1021/acs.nanolett.7b04526
[84]
Hirunpinyopas W, Prestat E, Worrall S D, Haigh S J, Dryfe R W, Bissett M A. ACS Nano, 2017,11(11):11082. https://pubs.acs.org/doi/10.1021/acsnano.7b05124

doi: 10.1021/acsnano.7b05124
[85]
Wang Z, Sim A, Urban J J, Mi B. Environ. Sci. Technol., 2018,52(17):9741. https://pubs.acs.org/doi/10.1021/acs.est.8b01705

doi: 10.1021/acs.est.8b01705
[86]
Zheng S, Tu Q, Urban J J, Li S, Mi B. ACS Nano, 2017,11(6):6440. https://pubs.acs.org/doi/10.1021/acsnano.7b02999

doi: 10.1021/acsnano.7b02999
[87]
Cui X, Wu X, Zhang J, Wang J, Zhang H, Du F, Qu L, Cao X, Zhang P. J. Mater. Chem. A, 2019,7(20):12698. http://xlink.rsc.org/?DOI=C9TA03159F

doi: 10.1039/C9TA03159F
[88]
Zhang P, Gong J L, Zeng G M, Song B, Cao W, Liu H Y, Huan S, Peng P. J. Membr. Sci., 2019,574:112. https://linkinghub.elsevier.com/retrieve/pii/S0376738818327984

doi: 10.1016/j.memsci.2018.12.046
[89]
Gao J, Zhang M, Wang J, Liu G, Liu H, Jiang Y. ACS Omega, 2019,4(2):4012. https://pubs.acs.org/doi/10.1021/acsomega.9b00155

doi: 10.1021/acsomega.9b00155
[90]
Liang X, Wang P, Wang J, Zhang Y, Wu W, Liu J, Bruggen B V. J. Membr. Sci., 2019,573:270. https://linkinghub.elsevier.com/retrieve/pii/S037673881831946X

doi: 10.1016/j.memsci.2018.12.015
[91]
Hu M, Mi B. J. Membr. Sci., 2014,469:80. https://linkinghub.elsevier.com/retrieve/pii/S0376738814004876

doi: 10.1016/j.memsci.2014.06.036
[92]
Lee T, Min S H, Gu M, Jung Y K, Lee W, Lee J U, Seong D G, Kim B S. Chem. Mat., 2015,27(11):3785. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00491

doi: 10.1021/acs.chemmater.5b00491
[93]
Zhou J, Qin Z, Lu Y, Li X, An Q, Ji S, Wang N, Guo H. J. Taiwan Inst. Chem. Eng., 2018,84:196. https://linkinghub.elsevier.com/retrieve/pii/S1876107018300361

doi: 10.1016/j.jtice.2018.01.015
[94]
Li M N, Sun X F, Wang L, Wang S Y, Afzal M Z, Song C, Wang S G. Desalination, 2018,436:107. https://linkinghub.elsevier.com/retrieve/pii/S0011916417324098

doi: 10.1016/j.desal.2018.02.008
[95]
吴正颖(Wu Z Y), 刘谢(Liu X), 刘劲松(Liu J S), 刘守清(Liu S Q), 查振龙(Cha Z L), 陈志刚(Chen Z G). 化学进展 (Progress in Chemistry), 2019,31(8):1086.
[96]
Ding Y, Zhou Y, Nie W, Chen P. Appl. Surf. Sci., 2015,357:1606. https://linkinghub.elsevier.com/retrieve/pii/S0169433215024277

doi: 10.1016/j.apsusc.2015.10.030
[97]
Ibukun O, Evans P E, Dowben P A, Jeong H K. Chemical Physics, 2019,525:110419. https://linkinghub.elsevier.com/retrieve/pii/S0301010419300631

doi: 10.1016/j.chemphys.2019.110419
[98]
Wang C, Lin H, Liu Z, Wu J, Xu Z, Zhang C. Part. Part. Syst. Charact., 2016,33(4):221. http://doi.wiley.com/10.1002/ppsc.v33.4

doi: 10.1002/ppsc.v33.4
[99]
Adhikari S, Mandal S, Kim D H. Chem. Eng. J., 2019,373:31. https://linkinghub.elsevier.com/retrieve/pii/S1385894719310319

doi: 10.1016/j.cej.2019.05.017
[100]
Zhang S, Wang L, Liu C, Luo J, Crittenden J, Liu X, Cai T, Yuan J, Pei Y, Liu Y. Water. Res., 2017,121:11. https://linkinghub.elsevier.com/retrieve/pii/S004313541730372X

doi: 10.1016/j.watres.2017.05.013
[101]
Jiao S L, Liu L. Ind. Eng. Chem. Res., 2019,58(2):18141. https://pubs.acs.org/doi/10.1021/acs.iecr.9b03680

doi: 10.1021/acs.iecr.9b03680
[102]
Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y. Chem., 2018,4(6):1359. https://linkinghub.elsevier.com/retrieve/pii/S2451929418301153

doi: 10.1016/j.chempr.2018.03.002
[103]
Voiry D, Fullon R, Yang J, Silva C, Kappera R, Bozkurt I, Kaplan D, Lagos M J, Batson P E, Gupta G, Mohite A D, Dong L, Er D, Shenoy V B, Asefa T, Chhowalla M. Nat. Mater., 2016,15(9):1003. https://doi.org/10.1038/nmat4660

doi: 10.1038/nmat4660
[104]
Umukoro E H, Kumar N, Ngila J C, Arotiba O A. J. Electroanal. Chem., 2018,827:193. https://linkinghub.elsevier.com/retrieve/pii/S1572665718306246

doi: 10.1016/j.jelechem.2018.09.027
[105]
Fan X, Zhou Y, Zhang G, Liu T, Dong W. Appl. Catal. B-Environ., 2019,244:396. https://linkinghub.elsevier.com/retrieve/pii/S0926337318311202

doi: 10.1016/j.apcatb.2018.11.061
[106]
Zhao Y, Jafvert C T. Environ. Sci. Nano, 2015,2:136. http://xlink.rsc.org/?DOI=C4EN00209A

doi: 10.1039/C4EN00209A
[107]
Zhao Y, Hsieh H S, Wang M, Jafvert C T. Carbon, 2017,123:216. https://linkinghub.elsevier.com/retrieve/pii/S0008622317307303

doi: 10.1016/j.carbon.2017.07.048
[108]
张理勇(Zhang L Y), 方粮(Fang L), 彭向阳(Peng X Y). 物理学报 (Acta Physica Sinica), 2016,65(12):12710101.
[109]
Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M. Nanoscale, 2014,6(17):10126. http://dx.doi.org/10.1039/c4nr01965b

doi: 10.1039/c4nr01965b
[110]
Xuan H, Dai W, Zhu Y, Ren J, Zhang J, Ge L. Sens. Actuator B-Chem., 2018,257:1110. https://linkinghub.elsevier.com/retrieve/pii/S0925400517322098

doi: 10.1016/j.snb.2017.11.078
[111]
Priyadharsan A, Shanavas S, Vasanthakumar V, Balamuralikrishnan B Anbarasan P M. Colloid Surf. A-Physicochem. Eng. Asp., 2018,559:43. https://linkinghub.elsevier.com/retrieve/pii/S0927775718310835

doi: 10.1016/j.colsurfa.2018.09.034
[112]
Liu S B, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R R, Kong J, Chen Y. ACS Nano, 2011,5(9):6971. https://pubs.acs.org/doi/10.1021/nn202451x

doi: 10.1021/nn202451x
[113]
Wu R, Ou X, Tian R, Zhang J, Jin H, Dong M, Li J, Liu L. Nanoscale, 2018,10(43):20162. http://xlink.rsc.org/?DOI=C8NR04207A

doi: 10.1039/C8NR04207A
[114]
Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samori P. Chem. Soc. Rev., 2018,47(13):4860. http://xlink.rsc.org/?DOI=C8CS00417J

doi: 10.1039/C8CS00417J
[115]
Hwang J H, Islam M A, Choi H, Ko T J, Rodriguez K L, Chung H S, Jung Y, Lee W H. Anal. Chem., 2019,91(18):11770. https://pubs.acs.org/doi/10.1021/acs.analchem.9b02382

doi: 10.1021/acs.analchem.9b02382
[116]
Zhou W Y, Li S S, Xiao X Y, Chen S H, Liu J H, Huang X J. Chem. Commun., 2018,54(67):9329 http://xlink.rsc.org/?DOI=C8CC04575E

doi: 10.1039/C8CC04575E
[117]
Sun Y F, Sun J H, Wang J, Pi Z X, Wang L C, Yang M, Huang X J. Anal. Chim. Acta., 2019,1063:64. https://linkinghub.elsevier.com/retrieve/pii/S0003267019302818

doi: 10.1016/j.aca.2019.03.008
[118]
Zhi L, Zuo W, Chen F, Wang B. ACS Sustain. Chem. Eng., 2016,4(6):3398. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b00409

doi: 10.1021/acssuschemeng.6b00409
[119]
Cui J, Xu S, Wang L. Sci. China-Mater., 2017,60(4):352. http://link.springer.com/10.1007/s40843-017-9019-4

doi: 10.1007/s40843-017-9019-4
[120]
Wang Y, Ni Y. Ana.l Chem., 2014,86(15):7463. https://pubs.acs.org/doi/10.1021/ac5012014

doi: 10.1021/ac5012014
[121]
Sha R, Vishnu N, Badhulika S. Sens. Actuator B-Chem., 2019,279:53. https://linkinghub.elsevier.com/retrieve/pii/S0925400518317428

doi: 10.1016/j.snb.2018.09.106
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[10] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[11] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[14] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.