中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 918-927 DOI: 10.7536/PC221235 Previous Articles   Next Articles

• Review •

Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds

Yuan Wang1,2(), Yulv Yu1,2, Xin Tan1,2   

  1. 1 College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
    2 Beijing National Laboratory for Molecular Sciences,Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail:wangy@pku.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(91961103); The National Natural Science Foundation of China(21821004); The Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202001); The National Key Research and Development Program(2021YFA1501000)
Richhtml ( 22 ) PDF ( 331 ) Cited
Export

EndNote

Ris

BibTeX

Selectively catalytic hydrogenation of CO2 to multi-carbon compounds is of great significance for reducing carbon dioxide emissions and regenerating carbon-containing resources. In this review, we summarize the development of catalytic systems for CO2 hydrogenation to multi-carbon compounds in recent years. The development of metal nanocluster catalysts for CO2 hydrogenation to multi-carbon hydrocarbons or alcohols at low temperatures are introduced, and the chemical basis for regulating C1 and C2+ product selectivity in CO2 hydrogenation is discussed. The progresses in preparing and understanding the structure-function relationship of Pt-Ru bimetallic nanocluster catalysts with the high selectivity for C2+ compounds in the CO2 hydrogenation at low temperatures are discussed. Finally, we elaborate the theory of local charge distribution effect of metal nanocluster catalysts.

Contents

1 Introduction

2 Performance and conversion pathways of CO2 hydrogenation over metal nanocluster catalysts at low temperatures

3 Chemical basis for controlling the product selectivity

4 Preparation and properties of a highly selective PtRu bimetallic nanoclusters catalyst

5 Structural characteristics of active sites of metal nanoclusters

6 Conclusion and perspective

Fig.1 (A~C) TEM image, high-resolution TEM image, and HAADF-STEM image of Ru-Pt/FeCO3, (D) High-resolution TEM image of the selected area in (C), (E~G) EDX elemental mapping of Pt, Fe, and Ru in the same area, (H) Merged image of (E) and (G)[28]. Reproduced from Ref. 28 with permission from the Royal Society of Chemistry
Fig.2 (A) Product distributions for CO2 hydrogenation over Ru-Pt/FeCO3 at different temperatures. (B) Apparent activation energy measurements for the formation of methane and higher hydrocarbons (C2+) in CO2 hydrogenation over Ru-Pt/FeCO3, respectively[28]. Reproduced from Ref. 28 with permission from the Royal Society of Chemistry
Fig.3 A scheme of the mechanism for the generation of multi-carbon compounds by the hydrogenation of carbonate in FeCO3 coupled with carbonation of surface ferrous species[28]. Modified from Ref. 28 with permission from the Royal Society of Chemistry
Fig.4 (A, B) The mass spectra of propanol and butanol formed in CO2 hydrogenation over Ru-Pt/Fe3O4 in18O labeled water, (C) reaction mechanism for multi-carbon alcohols formation based on metal-alkyl hydrolysis over Ru-Pt/Fe3O4[30]
Fig.5 A scheme for regulating product selectivity in CO2 hydrogenation at low temperatures
Fig.6 (A) The HAADF-STEM image of Ru-co-Pt/C. (B~D) Energy dispersive X-ray spectroscopy (EDX) elemental mapping image of Pt (B), Ru (C), and Pt + Ru (D) in the selected area. (E) The atomic-resolution HADDF-STEM image of a typical particle in the selected area. (F) A model for the structure of Ru-co-Pt, in which the atom columns mainly composed of Pt and Ru are marked with red and green balls, respectively. (G) The enlarged HAADF-STEM image of the selected typical bimetallic particle in (E). (H) Line scan Z-contrast analysis of atom columns in the bimetallic nanoparticle in (E) along the arrow in (F)[31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
Fig.7 (A, B) XPS spectra of Ru 3d (A) and Pt 4f levels (B) in Ru-co-Pt/C, respectively. (C, D) Fourier transform (FT) EXAFS spectra of Ru K edge (C) and Pt L3 edge (D) for Ru-co-Pt/C, respectively[31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
Fig.8 (A) Catalytic performance of Ru-co-Ru/C, Pt-co-Pt/C, and Ru-co-Pt/C in CO2 hydrogenation, respectively. (B) Catalytic performance of Ru-co-Pt/C in CO2 hydrogenation at different temperatures. (C) The stability of Ru-co-Pt/C in CO2 hydrogenation at 130℃. (D~F) Product distributions in CO2 hydrogenation over Ru-co-Ru/C (D), Pt-co-Pt/C (E), and Ru-co-Pt/C (F) at 130℃, respectively. Wn represents the mass percentage of Cn compounds in the products [31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
Fig.9 The (A) top view and (B) side view of Pt42-Ru8 nanocluster. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
Table 1 The energy barriers of several primitive reactions in CO2 hydrogenation calculated via DFT. [31] Reproduced from Ref. 31 with permission from the Royal Society of Chemistry.
[1]
Ra E C, Kim K Y, Kim E H, Lee H, An K, Lee J S. ACS Catal., 2020, 10(19): 11318.

doi: 10.1021/acscatal.0c02930
[2]
Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun., 2019, 10: 5698.

doi: 10.1038/s41467-019-13638-9
[3]
Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L. Catal. Sci. Technol., 2021, 11(5): 1665.

doi: 10.1039/D0CY01913E
[4]
Liu M, Yi Y H, Wang L, Guo H C, Bogaerts A. Catalysts, 2019, 9(3): 275.

doi: 10.3390/catal9030275
[5]
Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J, Manovic V. Renew. Sustain. Energy Rev., 2020, 125: 109799.

doi: 10.1016/j.rser.2020.109799
[6]
Porosoff M D, Yan B H, Chen J G. Energy Environ. Sci., 2016, 9(1): 62.

doi: 10.1039/C5EE02657A
[7]
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. Science, 2019, 364(6438): eaav3506.

doi: 10.1126/science.aav3506
[8]
Siudyga T, Kapkowski M, Bartczak P, Zubko M, Szade J, Balin K, Antoniotti S, Polanski J. Green Chem., 2020, 22(15): 5143.

doi: 10.1039/D0GC01332C
[9]
Wu C Y, Lin L L, Liu J J, Zhang J P, Zhang F, Zhou T, Rui N, Yao S Y, Deng Y C, Yang F, Xu W Q, Luo J, Zhao Y, Yan B H, Wen X D, Rodriguez J A, Ma D. Nat. Commun., 2020, 11: 5767.

doi: 10.1038/s41467-020-19634-8
[10]
Petala A, Panagiotopoulou P. Appl. Catal. B Environ., 2018, 224: 919.

doi: 10.1016/j.apcatb.2017.11.048
[11]
Wang J J, Li G N, Li Z L, Tang C Z, Feng Z C, An H Y, Liu H L, Liu T F, Li C. Sci. Adv., 2017, 3: e1701290.

doi: 10.1126/sciadv.1701290
[12]
Porosoff M D, Yang X F, Boscoboinik J A, Chen J G. Angew. Chem. Int. Ed., 2014, 53(26): 6705.

doi: 10.1002/anie.201404109 pmid: 24839958
[13]
Xu Y F, Li X Y, Gao J H, Wang J, Ma G Y, Wen X D, Yang Y, Li Y W, Ding M Y. Science, 2021, 371(6529): 610.

doi: 10.1126/science.abb3649
[14]
Zhang Y R, Yang X L, Yang X F, Duan H M, Qi H F, Su Y, Liang B L, Tao H B, Liu B, Chen D, Su X, Huang Y Q, Zhang T. Nat. Commun., 2020, 11: 3185.

doi: 10.1038/s41467-020-17044-4 pmid: 32581251
[15]
Li Y W, Gao W, Peng M, Zhang J B, Sun J L, Xu Y, Hong S, Liu X, Liu X W, Wei M, Zhang B S, Ma D. Nat. Commun., 2020, 11: 61.

doi: 10.1038/s41467-019-13691-4
[16]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.

doi: 10.1021/acscatal.7b03251
[17]
Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Nat. Commun., 2017, 8: 15174.

doi: 10.1038/ncomms15174
[18]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794
[19]
He Z H, Qian Q L, Zhang Z F, Meng Q L, Zhou H C, Jiang Z W, Han B X. Phil. Trans. R. Soc. A., 2015, 373(2057): 20150006.

doi: 10.1098/rsta.2015.0006
[20]
He Z H, Cui M, Qian Q L, Zhang J J, Liu H Z, Han B X. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(26): 12654.

doi: 10.1073/pnas.1821231116
[21]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.

doi: 10.1002/anie.201507585
[22]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.

doi: 10.1002/anie.v57.21
[23]
Wang Y, Ren J W, Deng K, Gui L L, Tang Y Q. Chem. Mater., 2000, 12(6): 1622.

doi: 10.1021/cm0000853
[24]
Zuo B J, Wang Y, Wang Q L, Zhang J L, Wu N Z, Peng L D, Gui L L, Wang X D, Wang R M, Yu D P. J. Catal., 2004, 222: 493.

doi: 10.1016/j.jcat.2003.12.007
[25]
Zhang J L, Wang Y, Ji H, Wei Y G, Wu N Z, Zuo B J, Wang Q L. J. Catal., 2005, 229(1): 114.

doi: 10.1016/j.jcat.2004.09.029
[26]
Wang Y, Zhang J L, Wang X D, Ren J W, Zuo B J, Tang Y Q. Top. Catal., 2005, 35(1/2): 35.

doi: 10.1007/s11244-005-3811-7
[27]
Wang Y, Wang X D. Elsevier, Amsterdam, 2008. 327.
[28]
Yu Y L, Huang J, Wang Y. Sustain. Energy Fuels, 2020, 4(1): 96.

doi: 10.1039/C9SE00612E
[29]
Huang J, Cai Y C, Yu Y L, Wang Y. Chem. Res. Chin. Univ., 2022, 38(1): 223.

doi: 10.1007/s40242-021-1382-1
[30]
Yu Y L, Huang J, Wang Y. ChemCatChem, 2018, 10(21): 4863.
[31]
Yu Y L, Cai Y C, Liang M H, Tan X, Huang J, Kotegawa F, Li Z Z, Zhou J H, Jiang H, Harada M, Wang Y. Catal. Sci. Technol., 2022, 12(12): 3786.

doi: 10.1039/D2CY00500J
[32]
Hu X, Zhang G T, Bu F X, Lei A W. ACS Catal., 2017, 7(2): 1432.

doi: 10.1021/acscatal.6b03388
[33]
Li L, Herzon S B. J. Am. Chem. Soc., 2012, 134(42): 17376.

doi: 10.1021/ja307145e
[34]
Yuzawa H, Yoneyama S, Yamamoto A, Aoki M, Otake K, Itoh H, Yoshida H. Catal. Sci. Technol., 2013, 3(7): 1739.

doi: 10.1039/c3cy00019b
[35]
Franke R, Selent D, Börner A. Chem. Rev., 2012, 112(11): 5675.

doi: 10.1021/cr3001803
[36]
Wang P, Liu H, Yang D. Prog. Chem., 2022, 34(5): 1076.
( 王鹏, 刘欢, 杨妲. 化学进展, 2022, 34(5): 1076.).

doi: 10.7536/PC210522
[37]
Bhatnagar A K, Gupta A K, Joshi S C, Goyal H B. Patent, 1130/DEL/2002.
[38]
Lin H, Meng Y Y, Li N, Tang Y H, Dong S, Wu Z L, Xu C L, Kazlauskas R, Chen H G. Angew. Chem. Int. Ed., 2022, 61(32): e202206472.
[39]
Xu D, Wang Y Q, Ding M Y, Hong X L, Liu G L, Tsang S C E. Chem, 2021, 7(4): 849.

doi: 10.1016/j.chempr.2020.10.019
[40]
Liu Y, Chen L F, Cheng T, Guo H Y, Sun B, Wang Y. J. Power Sources, 2018, 395: 66.

doi: 10.1016/j.jpowsour.2018.05.055
[41]
Yan M Y, Wu T, Chen L F, Yu Y L, Liu B, Wang Y, Chen W X, Liu Y, Lian C, Li Y D. ChemCatChem, 2018, 10(11): 2433.

doi: 10.1002/cctc.v10.11
[42]
Speder J, Altmann L, Roefzaad M, Bäumer M, Kirkensgaard J J K, Mortensen K, Arenz M. Phys. Chem. Chem. Phys., 2013, 15(10): 3602.

doi: 10.1039/c3cp50195g
[43]
Quinson J, Inaba M, Neumann S, Swane A A, Bucher J, Kunz S, Arenz M, ACS Catal. 2018, 8: 6627.

doi: 10.1021/acscatal.8b00694
[44]
Cheng T, Tan X, Chen L F, Zhao X S, Kotegawa F, Huang J, Liu Y, Jiang H, Harada M, Wang Y. Energy Technol., 2022, 10(11): 2200680.

doi: 10.1002/ente.v10.11
[45]
Wang Y, Hao M G. Nanomaterials, 2023, 13(3): 565.

doi: 10.3390/nano13030565
[46]
Liang M H, Wang X D, Liu H Q, Liu H C, Wang Y. J. Catal., 2008, 255(2): 335.

doi: 10.1016/j.jcat.2008.02.025
[47]
Wang Y, Ren P J, Hu J T, Tu Y C, Gong Z M, Cui Y, Deng D H. Nat. Commun., 2021, 12: 5814.

doi: 10.1038/s41467-021-26089-y
[48]
Yu J, Chen W M, Li K X, Zhang C H, Li M Z, He F, Jiang L, Li Y L, Song W G, Cao C Y. Angew. Chem. Int. Ed., 2022, 61(34): e202207255.
[49]
Cheng Y L, Zhao X S, Yu Y L, Chen L F, Cheng T, Huang J, Liu Y, Harada M, Ishihara A, Wang Y. J. Power Sources, 2020, 446: 227332.

doi: 10.1016/j.jpowsour.2019.227332
[1] Xiaoyu Shen, Zhongtian Du, Bairui Guo, Zhongxu Guo, Changhai Liang. Selective Oxidative Lactonization of 1,6-Hexanediol into ε-Caprolactone [J]. Progress in Chemistry, 2023, 35(8): 1191-1198.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[4] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[7] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[8] Xin Lin, Fanfu Guan, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation [J]. Progress in Chemistry, 2020, 32(11): 1680-1696.
[9] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[10] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[11] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[12] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
[13] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[14] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[15] Zhang Lei, Tu Qian, Chen Xuenian, Liu Pu. Nano Metal Catalysts in Dehydrogenation of Ammonia Borane [J]. Progress in Chemistry, 2014, 26(05): 749-755.