中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 547-563 DOI: 10.7536/PC171251 Previous Articles   Next Articles

• Review •

CO2: C1 Synthon in Carboxylation Reactions

Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*   

  1. Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Program on Key Research Project (No.2016YFA0602900) for financial support.
PDF ( 815 ) Cited
Export

EndNote

Ris

BibTeX

Recently organic synthesis using carbon dioxide as the raw material has attracted considerable attention from scientists because of the resourceful and environmental factors. Especially, transition metal-catalyzed carboxylation reaction is an efficient method to construct carboxylic acids and their derivatives, which is regarded as one of ideal strategies for carbon dioxide utilization and carbon recycle. The recent advances of carboxylation reaction of CO2 with various substrates (electrophiles, hydrocarbons, nucleophiles) are reviewed herein.
Contents
1 Introduction
2 Carboxylation of CO2 with various electrophiles
2.1 Carboxylation of CO2 with halogenated hydrocarbon
2.2 Carboxylation of CO2 with esters or alcohols
2.3 Carboxylation of CO2 with other electrophiles
3 Carboxylation of CO2 with diverse hydrocarbon compounds containing C—H bond
3.1 Carboxylation of CO2 with hydrocarbon containing C(sp)—H bond
3.2 Carboxylation of CO2 with hydrocarbon containing C(sp2)—H bond
3.3 Carboxylation of CO2 with hydrocarbon containing C(sp3)—H bond
4 Carboxylation of CO2 with different nucleophiles
4.1 Carboxylation of CO2 with organoboranes
4.2 Carboxylation of CO2 with organosilanes
5 Conclusion and outlook

CLC Number: 

[1] Dibenedetto A, Angelini A, Aresta M. Chem. Rev., 2014, 114:1709.
[2] Liu Q, Wu L P, Jackstell1 R, Beller M. Nat. Commun., 2015, 6:5933.
[3] Huang K, Sun C L, Shi Z J. Chem. Soc. Rev., 2011, 40:2435.
[4] Sekine K, Yamada T. Chem. Soc. Rev., 2016, 45:4524.
[5] Fiorani G, Guo W S, Kleij A W. Green Chem., 2015, 17:1375.
[6] Zhou H, Wang G X, Zhang W Z, Lu X B. ACS Catal., 2015, 5:6773.
[7] Stephan D W. Acc. Chem. Res., 2015, 48:306.
[8] Correa A, Martin R. J. Am. Chem. Soc., 2009, 131:15974.
[9] Fujihara T, Nogi K, Xu T H, Terao J, Tsuji Y. J. Am. Chem. Soc., 2012, 134:9106.
[10] Tran H V, Daugulis O. ACS Catal., 2013, 3:2417.
[11] Leon T, Correa A, Martin R. J. Am. Chem. Soc., 2013, 135:1221.
[12] Zhang S, Chen W Q, Yu A, He L N. ChemCatChem, 2015, 7:3972.
[13] Wang X Q, Liu Y, Martin R. J. Am. Chem. Soc., 2015, 137:6476.
[14] Moragasa T, Martin R. Synthesis, 2016, 48:A.
[15] Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc., 2016, 138:7504.
[16] Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature, 2017, 545:84.
[17] Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc., 2017, 139:9467.
[18] Meng Q Y, Wang S, Kçnig B. Angew. Chem. Int. Ed., 2017, 56:13426.
[19] Wang X Q, Liu Y, Martin R. J. Am. Chem. Soc., 2015, 137:6476.
[20] Higuchi Y, Mita T, Sato Y. Org. Lett., 2017, 19:2710.
[21] Nogi K, Fujihara T, Terao J, Tsuji Y. Chem. Commun., 2014, 50:13052.
[22] Correa A, Leon T, Martin R. J. Am. Chem. Soc., 2014, 136:1062.
[23] Moragas T, Cornella J, Martin R. J. Am. Chem. Soc., 2014, 136:17702.
[24] Nogi K, Fujihara T, Terao J, Tsuji Y. J. Org. Chem., 2015, 80:11618.
[25] Rebih F, Andreini M, Moncomble A, Harrison-Marchand A, Maddaluno J, Durandetti M. Chem. Eur. J., 2016, 22:3758.
[26] Mita T, Higuchi Y, Sato Y. Chem. Eur. J., 2015, 21:16391.
[27] Gemmeren M V, Bçrjesson M, Tortajada A, Sun S Z, Okura K, Martin R. Angew. Chem. Int. Ed., 2017, 56:6558.
[28] Chen Y G, Shuai B, Ma C, Zhang X J, Fang P, Mei T S. Org. Lett., 2017, 19:2969.
[29] Sun S, Yu J T, Jiang Y, Cheng J. Adv. Synth. Catal., 2015, 357:2022.
[30] Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed., 2016, 55:5053.
[31] Yu D Y, Zhang Y G. Green Chem., 2011, 13:1275.
[32] Yu D Y, Tan M X, Zhang Y G. Adv. Synth. Catal., 2012, 354:969.
[33] Zhang X, Zhang W Z, Ren X, Zhang L L, Lu X B. Org. Lett., 2011, 13:2402.
[34] Arndt M, Risto E, Krause T, Gooßen L J. ChemCatChem, 2012, 4:484.
[35] Guo C X, Yu B, Xie J N, He L N. Green Chem., 2015, 17:474.
[36] Wu Z L, Sun L, Liu Q G, Yang X F, Ye X, Hu Y C, Huang Y Q. Green Chem., 2017, 19:2080.
[37] Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y. Org. Biomol. Chem., 2012, 10:1514.
[38] Schreiner E, Braun S, Kwasnitschka C, Frank W, Müller T J J. Adv. Synth. Catal., 2014, 356:3135.
[39] Xie J N, Yu B, Guo X C, He L N. Green Chem., 2015, 17:4061.
[40] Wu F S, Tong W, Liang Y, Wang H S, Teng Q H, Pan Y M. RSC Adv., 2016, 6:63855.
[41] Wang X, Lim Y N, Lee C, Jang H Y, Lee B Y. Eur. J. Org. Chem., 2013,10:1867.
[42] Kuge K, Luo Y, Fujita Y, Mori Y, Onodera G, Kimura M. Org. Lett., 2017, 19:854.
[43] Lejkowski M L, Lindner R, Kageyama T, Bódizs G É, Plessow P N, Müller I B, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk S A, Limbach M. Chem. Eur. J., 2012, 18:14017.
[44] Huguet N, Jevtovikj I, Gordillo A, Lejkowski M L, Lindner R, Bru M, Khalimon A Y, Rominger F, Schunk S A, Hofmann P, Limbach M. Chem. Eur. J., 2014, 20:16858.
[45] Manzini S, Huguet N, Trapp O, Schaub T. Eur. J. Org. Chem., 2015, 32:7122.
[46] Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2011, 133:1251.
[47] Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2013, 135:10954.
[48] Ueno A, Takimoto M, O N W, Nishiura M, Ikariya T, Hou Z M. Chem. Asian J., 2015, 10:1010.
[49] Luo J F, Preciado S, Xie P, Larrosa I. Chem. Eur. J., 2016, 22:6798.
[50] Zhang L, Cheng J H, Ohishi T, Hou Z M. Angew. Chem. Int. Ed., 2010, 49:8670.
[51] Boogaerts I I F, Fortman G C, Furst M R L, Cazin C S J, Nolan S P. Angew. Chem. Int. Ed., 2010, 49:8674.
[52] Inomata H, Ogata K, Fukuzawa S I, Hou Z M. Org. Lett., 2012, 14:3986.
[53] Yoo W J, Capdevila M G, Du X W, Kobayashi S. Org. Lett., 2012, 14:5326.
[54] Xin Z, Lescot C, Friis S D, Daasbjerg K, Skrydstrup T. Angew. Chem., 2015, 127:6966.
[55] Zhang Z, Ju T, Ye J H, Yu D G.Synlett., 2017, 28:741.
[56] Zhang Z, Liao L L, Yan S S, Wang L, He Y Q, Ye J H, Li J, Zhi Y G, Yu D G. Angew. Chem. Int. Ed., 2016, 55:7068.
[57] Zhang Z, Ju T, Miao M, Han J L, Zhang Y H, Zhu X Y, Ye J H, Yu D G, Zhi Y G. Org. Lett., 2017, 19:396.
[58] Liu Q Y, Li M, Xiong R, Mo F Y. Org. Lett., 2017, 19:6756.
[59] Mita T, Michigami K, Sato Y. Org. Lett., 2012, 14:3462.
[60] Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc., 2015, 137:14063.
[61] Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J., 2016, 22:6524.
[62] Michigami K, Mita T S, Sato Y. J. Am. Chem. Soc., 2017, 139:6094.
[63] Guo C X, Zhang W Z, Zhou H, Zhang N, Lu X B. Chem. Eur. J., 2016, 22:17156.
[64] Zhang W Z, Yang M W, Lu X B. Green Chem., 2016, 18:4181.
[65] Grigg R D, Rigoli J W, Hoveln R V, Neale S, Schomaker J M. Chem. Eur. J., 2012, 18:9391.
[66] Ohishi T, Nishiura M, Hou Z M. Angew. Chem., 2008, 120:5876.
[67] Ohishi T, Zhang L, Nishiura M, Hou Z M. Angew. Chem. Int. Ed., 2011, 50:8114.
[68] Ohmiya H, Tanabe M, Sawamura M. Org. Lett., 2011, 13:1086.
[69] Juhl M, Laursen S L R, Huang Y X, Nielsen D U, Daasbjerg K, Skrydstrup T. ACS Catal., 2017, 7:1392.
[70] Zhang X, Zhang W Z, Shi L L, Guo C X, Zhang L L, Lu X B. Chem. Commun., 2012, 48:6292.
[71] Makida Y, Marelli E, Slawina A M Z, Nolan S P. Chem. Commun., 2014, 50:8010.
[72] Duong H A, Huleatt P B, Tan Q W, Shuying E L. Org. Lett., 2013, 15:4034.
[73] Yonemoto-Kobayashi M, Inamoto K, Tanaka Y, Kondo Y. Org. Biomol. Chem., 2013, 11:3773.
[74] Sekine K, Sadamitsu Y, Yamada T. Org. Lett., 2015, 17:5706.
[75] Frogneux X, Wolff N V, Thuéry P, Lefévre G, Cantat T. Chem. Eur. J., 2016, 22:2930.
[76] Mita T, Chen J Y, Sugawara M, Sato Y. Org. Lett., 2012, 14:6202.
[77] Mita T, Higuchi Y, Sato Y. Org. Lett., 2014, 16:14.
[78] Mita T, Sugawara M, Saito K, Sato Y. Org. Lett., 2014, 16:3028.
[79] Mita T, Sugawara M, Sato Y. J. Org. Chem., 2016, 81:5236.
[80] Fukushima H, Ohshita J, Yoshida H, Kunai A. J. Am. Chem. Soc., 2006, 128:11040.
[81] Morishita T, Ohshita J, Yoshida H. Org. Lett., 2008, 10:3845.
[82] Kaicharla T, Thangaraj, Biju A T. Org. Lett., 2014, 16:1728.
[83] Bhojgude S S, Roy T, Gonnade R G, Biju A T. Org. Lett., 2016, 18:5424.
[84] Yoo W J, Nguyen Q T V, Kobayashi S. Angew. Chem. Int. Ed., 2014, 53:10213.
[85] Nguyen T V Q, Rodríguez-Santamaría J A, Yoo W J, Kobayashi S. Green Chem., 2017, 19:2501.
[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[3] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[4] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[5] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[6] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[7] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[8] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[9] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[10] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[11] Liu Yifan, Ma Yuling, Xu Qinqin, Yin Jianzhong. Supported Ionic Liquid Membrane: Preparation, Characterization and Stability [J]. Progress in Chemistry, 2013, 25(10): 1795-1804.
[12] Wang Li, Ao Xianquan, Wang Shihan. Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas [J]. Progress in Chemistry, 2012, (9): 1696-1706.
[13] Wang Huixiang, Jiang Dong, Wu Dong, Li Debao, Sun Yuhan. Photocatalytic Reduction of CO2 on TiO2 Catalysts [J]. Progress in Chemistry, 2012, 24(11): 2116-2123.
[14] Qi Zisong, Dong Yali, Li Yaming, Duan Chunying. Transition Metal-Catalyzed Trifluoromethylation Reaction of Aromatic Compounds [J]. Progress in Chemistry, 2012, 24(11): 2177-2186.
[15] Zhou Tianchen, He Chuan, Zhang Yanan, Zhao Guohua*. Photoelectrocatalytic Reduction of CO2 [J]. Progress in Chemistry, 2012, (10): 1897-1905.
Viewed
Full text


Abstract

CO2: C1 Synthon in Carboxylation Reactions