中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 749-755 DOI: 10.7536/PC131128 Previous Articles   Next Articles

• Review •

Nano Metal Catalysts in Dehydrogenation of Ammonia Borane

Zhang Lei1, Tu Qian1, Chen Xuenian2, Liu Pu*1   

  1. 1. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. J1210060)

PDF ( 2017 ) Cited
Export

EndNote

Ris

BibTeX

As the chemical hydrogen storage material, it must have a high hydrogen storage capacity. Ammonia borane (NH3BH3, AB), whose hydrogen content is as high as 19.6 wt%, is regarded as a potential hydrogen storage medium with the bright future. The capacity of AB hydrolysis dehydrogenation is up to 7.8 wt%. The capacity of AB pyrolysis dehydrogenation can release 19.6 wt% of hydrogen. Both the hydrolysis dehydrogenation and the pyrolysis dehydrogenation have shown its great potential in the chemical hydrogen storage. In the study of AB dehydrogenation, catalyst is the key technology and the important research direction. Among all the catalysts about AB dehydrogenation, nano metal catalysts have been investigated for their excellent performance. In this paper, the nano catalysts and their performance about the dehydrogenation of ammonia borane are reviewed.

Contents
1 Introduction
2 One-component nano metal catalysts
2.1 Nano rhodium catalysts
2.2 Nano palladium catalysts
2.3 Nano ruthenium catalysts
2.4 Nano nickel catalysts
2.5 Other nano metals catalysts
3 Two-components nano metal catalysts
3.1 The supported bimetal catalysts
3.2 The alloy bimetal catalysts
3.3 The core-shell bimetal catalysts
4 Three-components nano metal nanoparticles
5 Conclusions and outlook

CLC Number: 

[1] Xiong Z, Yong C K, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R. Nat. Mater., 2008, 7:138.
[2] Louis Schlapbach A Z. Nature, 2001, 414:353.
[3] Hwang H T, Al-Kukhun A, Varma A. Int. J. Hydrogen Energ., 2012, 37:2407.
[4] Luo J H, Kang X D, Wang P. The J. Phys. Chem. C, 2010, 114:10606.
[5] Sit V, Geanangel R A. Thermochim. Acta, 1987, 113:379.
[6] Toche F, Chiriac R, Demirci U B, Miele P. Int. J. Hydrogen. Energ., 2012, 37:6749.
[7] Karahan S, Zahmakiran M, Ozkar S. Chem. Commun., 2012, 48:1180.
[8] Chandra M, Xu Q. J. Power Sources, 2006, 156:190.
[9] Marziale A N, Friedrich A, Klopsch I, Drees M, Celinski V R. J. Am. Chem. Soc., 2013, 135:13342.
[10] Nelson D J, Truscott B J, Egbert J D, Nolan S P. Organomet., 2013, 32:3769.
[11] Ghatak K, Vanka K. Comput. Theor. Chem., 2012, 992:18.
[12] Rossin A, Bottari G, Lozano-Vila A M, Paneque M, Peruzzini M, Rossi A, Zanobini F. Dalton. Trans., 2013, 42:3533.
[13] Sonnenberg J F, Morris R H. ACS Catal., 2013, 3:1092.
[14] Robertson A P, Suter R, Chabanne L, Whittell G R. Inorg. Chem., 2011, 50:12680.
[15] Song P, Li Y, Li W, He B, Yang J, Li X. Int. J. Hydrogen Energ., 2011, 36:10468.
[16] Conley B L, Guess D, Williams T J. J. Am. Chem. Soc., 2011, 133:14212.
[17] Umegaki T, Takei C, Watanuki Y, Xu Q, Kojima Y. J. Mol. Catal. A: Chem., 2013, 371:1.
[18] Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z. Nanoscale, 2012, 4:5597.
[19] Yousef A, Barakat N A M, El-Newehy M, Kim H Y. Int. J. Hydrogen Energy, 2012, 37:17715.
[20] Wen M, Zhou S, Wu Q, Zhang J, Wu Q, Wang C, Sun Y. J. Power Sources, 2013, 232:86.
[21] Zahmakiran M, Ayvali T, Philippot K. Langmuir, 2012, 28:4908.
[22] Durap F, Zahmak?ran M, Özkar S. Appl. Catal. A, 2009, 369:53.
[23] Ayvali T, Zahmakiran M, Özkar S. Dalton. Trams., 2011, 40:3584.
[24] Metin Ö, Duman S, Dinç M, Özkar S. J. Phys. Chem. C, 2011, 115:10736.
[25] Metin Ö, Kayhan E, Özkar S, Schneider J J. Int. J. Hydrogen Energy, 2012, 37:8161.
[26] K?l?ç B, ?encanl? S, Metin Ö. J. Mol. Catal. A: Chem., 2012, 361:104.
[27] Kim S K, Kim T J, Kim T Y, Lee G, Park J T, Nam S W, Kang S O. Chem. Commun., 2012, 48:2021.
[28] Zahmakiran M. Mater. Sci. Eng., B 2012, 177:606.
[29] Can H, Metin Ö. Appl. Catal. B: Environ., 2012, 125:304.
[30] Rachiero G P, Demirci U B, Miele P. Catal. Today, 2011, 170:85.
[31] Chen G, Desinan S, Rosei R, Rosei F, Ma D. Chem. Commun., 2012, 48:8009.
[32] Xin G, Yang J, Li W, Zheng J, Li X. Eur. J. Inorg. Chem., 2012, 2012:5722.
[33] Zahmak?ran M, Ayval? T, Akbayrak S, Çal??kan S, Çelik D, Özkar S. Catal. Today, 2011, 170:76.
[34] Umegaki T, Xu Q, Kojima Y. J. Power Sources, 2012, 216:363.
[35] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Ronnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[36] Gadipelli S, Ford J, Zhou W, Wu H, Udovic T J, Yildirim T. Chem. Eur.J., 2011, 17:6043.
[37] Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2013, 52:7446.
[38] Panthi G, Barakat N A M, Abdelrazek K K, Yousef A, Jeon K S, Kim H Y. Ceram. Int., 2013, 39:1469.
[39] Ferrando R, Jellinek J, Johnston R L. Chem. Rev., 2008, 108:845.
[40] Qiu F, Li L, Liu G, Wang Y, An C, Xu C, Xu Y, Wang Y, Jiao L, Yuan H. Int. J. Hydrogen Energy, 2013, 38:7291.
[41] Wang X, Liu D, Song S, Zhang H. Chem. Eur.J., 2013, 19:8082.
[42] Zhou X, Chen Z, Yan D, Lu H. J. Mater. Chem., 2012, 22:13506.
[43] Yan J M, Wang Z L, Wang H L, Jiang Q. J. Mater. Chem., 2012, 22:10990.
[44] Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N, Xu Q. J. Power Sources, 2009, 191:209.
[45] Rachiero G P, Demirci U B, Miele P. Int. J. Hydrogen Energy, 2011, 36:7051.
[46] Akdim O, Demirci U B, Miele P. Int. J. Hydrogen Energy, 2013, 38:5627.
[47] Qiu F Y, Wang Y J, Wang Y P, Li L, Liu G, Yan C, Jiao L F, Yuan H T. Catal. Today, 2011, 170:64.
[48] Li C, Zhou J, Gao W, Zhao J, Liu J, Zhao Y, Wei M, Evans D G, Duan X. J. Mater. Chem. A, 2013, 1:5370.
[49] Du J, Cheng F, Si M, Liang J, Tao Z. Int. J. Hydrogen Energy, 2013, 38:5768.
[50] Yan J M, Zhang X B, Han S, Shioyama H, Xu Q. J. Power Sources, 2009, 194:478.
[51] Chen G, Desinan S, Rosei R, Rosei F, Ma D. Chem. Eur.J., 2012, 18:7925.
[52] Zhou S, Wen M, Wang N, Wu Q, Cheng L. J. Mater. Chem., 2012, 22:16858.
[53] He T, Wang J, Liu T, Wu G, Xiong Z, Yin J, Chu H, Zhang T, Chen P. Catal. Today, 2011, 170:69.
[54] Amali A J, Aranishi K, Uchida T, Xu Q. Part. Part. Syst. Char., 2013, 30:888.
[55] Nirmala R, Kim H Y, Yi C, Barakat N A M. Int. J. Hydrogen Energy, 2012, 37:10036.
[56] Sun B, Wen M, Wu Q, Peng J. Adv. Funct. Mater., 2012, 22:2860.
[57] Wen M, Sun B, Zhou B, Wu Q, Peng J. J. Mater. Chem., 2012, 22:11988.
[58] Du Y, Cao N, Yang L, Luo W, Cheng G. New J. Chem., 2013, 37:3035.
[59] Yang L, Luo W, Cheng G. ACS Appl. Mater. Interfaces, 2013, 5:8231.
[60] Wang J, Qin Y L, Liu X, Zhang X B. J. Mater. Chem., 2012, 22:12468.
[61] Lu Z H, Jiang H L, Yadav M, Aranishi K, Xu Q. J. Mater. Chem., 2012, 22:5065.
[62] Yang X, Cheng F, Tao Z, Chen J. J. Power Sources, 2011, 196:2785.
[63] Jiang H L, Akita T, Xu Q. Chem. Commun., 2011, 47:10999.
[64] Kitchin J R, Norskov J K, Barteau M A, Chen J G. Phys. Rev. Lett., 2004, 93:156801.
[65] Aranishi K, Jiang H L, Akita T, Haruta M, Xu Q. Nano Research, 2011, 4:1233.
[66] Wang H L, Yan J M, Wang Z L, Jiang Q. Int. J. Hydrogen Energy, 2012, 37:10229.
[67] Yang L, Su J, Meng X, Luo W, Cheng G. J. Mater. Chem. A, 2013, 1:10016.
[68] Kalidindi S B, Vernekar A A, Jagirdar B R. Phys. Chem. Chem. Phys., 2009, 11:770.

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[7] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[8] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[9] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[10] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[11] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[12] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[13] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[14] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[15] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.