中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 417-422 DOI: 10.7536/PC190713 Previous Articles   Next Articles

Carbon Dioxide Smart Materials Based on Chitosan

Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He*()   

  1. School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Contact: Naipu He
  • Supported by:
    the National Natural Science Foundation of China(21164003)
Richhtml ( 32 ) PDF ( 872 ) Cited
Export

EndNote

Ris

BibTeX

It is a main strategy that carbon dioxide (CO2) in the atmosphere is effective utilized, and its concentration is balanced by capture and conversion of CO2. Generally, CO2 responsive polymers are prepared by alkene monomers containing amine groups. Their response and capture properties for CO2 are improved by grafting polymerization or combining with other functional molecules. Natural polymers including polysaccharide and protein are considered as excellent candidates to prepare environmentally friendly polymers because of their rich resources, non-toxicity, biodegradability and good biocompatibility. Additional, chitosan contains a large number of amino groups, so it is employed to prepare CO2 smart materials and exhibits specific advantages. In the current paper, firstly, CO2 responsive polymer and chitosan(CS) are introduced. Secondly, advance in CO2 responsive polymers and capture materials based on chitosan is reviewed. Finally, a prospect for smart materials based on chitosan in the future is provided.

Contents

1 Introduction

2 Carbon dioxide responsive polymers

3 Chitosan

4 Carbon dioxide responsive polymers based on chitosan

5 Capture materials based on chitosan for carbon dioxide

6 Conclusion and outlook

Fig. 1 CO2-switchable functional groupsin turn: tertiary amine, amidine, guanidine, imidazole, and carboxylic acid
Fig. 2 Reaction of amidines and amines with CO2 and water to form bicarbonate salts[9]
Fig. 3 Reversible response mechanism of carboxylic acid to CO2 gas molecule
Fig. 4 Reversible covalent binding mechanism of primary amine to CO2 gas molecule
Fig. 5 Preparation of chitosan by deacetylation of chitin
Fig. 6 Synthesis of CS-g-DMAEMA[27]
Fig. 7 Transition of CS-g-DMAEMA between protonated and deprotonated states by CO2/N2 [27]
Fig. 8 The CO2-switchability of the CNC hydrogel[29]
Fig. 9 Schematic illustration of the preparation of CNF-g-PDMAEMA aerogel for switchable oil-water separation[30]
Fig. 10 Schematic illustration of reversible CO2 capture by humidity swing[40]
Fig. 11 Microcosmic state and adsorption properties of chitosan-SiO2 nanoparticles[43]
[1]
Ackerman K V , Sundquist E T. Environ. Sci. Technol., 2008,42(15):5688. https://pubs.acs.org/doi/10.1021/es800221q

doi: 10.1021/es800221q
[2]
Haszeldine R S . Science, 2009,325(5948):1647.
[3]
Aziz B , Zhao G , Hedin N . Langmuir, 2011,27(7):3822.
[4]
Darabi A , Jessop P G , Cunningham M F. Chem. Soc. Rev., 2016,45(15):4391.
[5]
Stuart M A C , Huck W T S , Genzer J , Müller M , Ober C , Stamm M , Sukhorukov G B , Szleifer I , Tsukruk V V , Urban M , Winnik F , Zauscher S , Luzinov I , Minko S . Nat. Mater., 2010,9(2):101.
[6]
Dai S , Ravi P , Tam K C . Soft Matter, 2008,4(3):435. http://xlink.rsc.org/?DOI=b714741d

doi: 10.1039/b714741d
[7]
Lu H , Zhou Z , Jiang J , Huang Z .J Appl. Polym. Sci., 2015,132(7):41468.
[8]
许兵(Xu B) . 天津大学硕士毕业论文(Master’s Desertation of Tianjin University), 2015.
[9]
Fowler C I , Jessop P G , Cunningham M F . Macromolecules, 2012,45(7):2955.
[10]
Xu H , Rudkevich D M. . Chem-Eur. J., 2004,10(21):5432.
[11]
Jessop P G , Heldebrant D J , Li X , Eckert C A , Liotta C L . Nature, 2005,436(7054):1102.
[12]
Phan L , Brown H , White J , Hodgson A , Jessop P G. Green Chem., 2009,11(1):53.
[13]
Liu Y , Jessop P G , Cunningham M , Eckert C A , Liotta C L . Science, 2006,313(5789):958
[14]
Zhou Z , Lu H , Huang Z . J Disper. Sci. Tecnol., 2015,37(8):1200.
[15]
Guo Z , Feng Y , Wang Y , Wang J , Wu Y , Zhang Y . Chem. Commun, 2011,47(33):9348.
[16]
Yan Q , Zhao Y. Angew. Chem. Int. Ed., 2013,52(38):9948.
[17]
Shieh Y T , Hu F Z , Cheng C C. ACS Appl. Nano. Mater., 2018,1(1):384
[18]
Elgadir M A , Uddin M S , Ferdosh S , Adam A , Chowdhury A J K , Sarker M Z I. . J Food. Drug. Anal., 2015,23(4):619 https://linkinghub.elsevier.com/retrieve/pii/S1021949814001410

doi: 10.1016/j.jfda.2014.10.008
[19]
No H K , Meyers S P , Prinyawiwatkul W , Xu Z .J Food. Sci., 2007,72(5):R87.
[20]
Bawn C S H . Polymer, 1987,28(7):1234.
[21]
Hench L L . Biomaterials, 1998,19(16):1419. https://linkinghub.elsevier.com/retrieve/pii/S0142961298001331

doi: 10.1016/S0142-9612(98)00133-1
[22]
Kurita K. . Mar. Biotechnol, 2006,8(3):203. e5a0b5a2-c727-4805-a2e5-2da892660207 http://link.springer.com/10.1007/s10126-005-0097-5

doi: 10.1007/s10126-005-0097-5
[23]
Li Q , Dunn E T , Grandmaison E W , Goosen M F A. . J. Bioact. Compat. Polym., 1992,7(4):370.
[24]
Xie H , Zhang S , Li S . Green Chem, 2006,8(7):630.
[25]
Ren D , Xu S , Sun D , Wang Q , Xu Z . Colloid. Surface. A, 2018,555:507.
[26]
Shieh Y T , Lin Y T , Cheng C C. Carbohydr. Polym., 2017,170:281.
[27]
任冬寅(Ren D Y), 尚志新(Shang Z X), 王启宝(Wang Q B) . 日用化学工业(Household and Personal Care Chemical Industry), 2018,48(05):260.
[28]
He N , Cao Q , Wang L , Chen X , Li B , Liu Z. Macromol. Chem. Phys., 2018,219(23):1800319.
[29]
Oechsle A L , Lewis L , Hamad W Y , Hatzikiriakos S G , MacLachlan M . J. Chem. Mater., 2018,30(2):376.
[30]
Li Y , Zhu L , Grishkewich N , Tam K C , Yuan J , Mao Z , Sui X. ACS Appl. Mater. Inter., 2019,11(9):9367.
[31]
付新(Fu X) . 化学与生物工程(Chemistry and Bioengineering), 2011,28(10):11.
[32]
Ito A , Sato M , Anma T. Angew. Makromol. Chem., 1997,248(1):184.
[33]
Primo A , Forneli A , Corma A , García H . ChemSusChem., 2012,5(11):2207.
[34]
Yoshida H , Oelenschlaeger S , Minami Y , Terashima M . J. Chem. Eng. Jpn., 2002,35(1):32.
[35]
Huang C C , Shen S .J Taiwn Inst. Chem. Eng., 2013,44(1):89.
[36]
Fan X , Zhang L , Zhang G , Shu Z , Shi J . Carbon, 2013,61:423.
[37]
Alhwaige A A , Agag T , Ishida H , Qutubuddin S . RSC Adv, 2013,3(36):16011.
[38]
Alhwaige A A , Ishida H , Qutubuddin S. ACS Sustain. Chem. Eng., 2016,4(3):1286.
[39]
Fujiki J , Yogo K . Energy Fuels, 2014,28(10):6467.
[40]
Song J , Liu J , Zhao W , Chen Y , Xiao H , Shi X , Liu Y , Chen X. Ind. Eng. Chem. Res., 2018,57(14):4941. https://pubs.acs.org/doi/10.1021/acs.iecr.8b00064

doi: 10.1021/acs.iecr.8b00064
[41]
Sneddon G , Ganin A Y , Yiu H H P Energy Technol., 2015,3(3):190.
[42]
Pohako-Esko K , Bahlmann M , Schulz P S , Wasserscheid P. Ind. Eng. Chem. Res., 2016,55(25):7052.
[43]
Rafigh S M , Heydarinasab A. ACS Sustain. Chem. Eng., 2017,5(11):10379.
[1] Gao Peng, Gao Binbin, Gao Jianqiang, Zhang Kai, Yang Yongping, Chen Hongwei. Chitosan and Its Composites for Removal of Mercury Ion from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(12): 1834-1846.
[2] Wang Yihan, Wakisaka Minato. Nanofiber Fabrication Techniques and Its Applicability to Chitosan [J]. Progress in Chemistry, 2014, 26(11): 1821-1831.
[3] Liu Yifan, Ma Yuling, Xu Qinqin, Yin Jianzhong. Supported Ionic Liquid Membrane: Preparation, Characterization and Stability [J]. Progress in Chemistry, 2013, 25(10): 1795-1804.
[4] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[5] Sun Fan, Xu Min, Li Kerang, Zhang Shuai, Liu Pu*. Dissolution and Chemical Modification of Chitin and Chitosan in Ionic Liquids [J]. Progress in Chemistry, 2013, 25(05): 832-837.
[6] Zhang Xiacong, Li Wen, Zhang Afang. Thermoresponsive Dendritic Polymers [J]. Progress in Chemistry, 2012, (9): 1765-1775.
[7] Hu Huiyuan, Zhu Hong. Adsorption of Heavy Metal Ions by Chitosan and Its Derivatives [J]. Progress in Chemistry, 2012, 24(11): 2212-2223.
[8] Feng Anchao, Yan Qiang, Yuan Jinying*. CO2-Stimuli Responsive Polymers [J]. Progress in Chemistry, 2012, (10): 1995-2003.
[9] Xie Rui, Yang Mei, Cheng Changjing, Jiang Jing, Chu Liangyin. Molecular-Recognition and Thermo-Responsive Composite Smart Polymeric Materials [J]. Progress in Chemistry, 2012, 24(0203): 195-202.
[10] . Synthesis, Characterization and Application of Phosphorus-Containing Derivatives of Chitosan [J]. Progress in Chemistry, 2010, 22(05): 938-947.
[11] Luo Chunhua1,2 Dong Qiujing1 Zheng Zhaohui2 Ding Xiaobin2** Peng Yuying2**. Gold Nanoparticles Coated with Stimuli Responsive Polymer [J]. Progress in Chemistry, 2009, 21(12): 2674-2681.
[12] Wang Xiaoying Du Yumin Sun Runcang Lin Lu. Chitosan-Based Layered Silicate Nanocomposites [J]. Progress in Chemistry, 2009, 21(0708): 1507-1514.
[13] Cao Liangcheng|Wang Yuechuan*

. Preparation and Mechanism of Electrochromic Viologens [J]. Progress in Chemistry, 2008, 20(09): 1353-1360.
[14] Xiong Lijun|Hu Xiaobo|Liu Xinxing|Tong Zhen**. Polymer-Laponite Nanocomposite Hydrogels with Super-Elongation [J]. Progress in Chemistry, 2008, 20(04): 464-468.
[15] Li Xingui|Feng Hao|Huang Meirong*. Natural Sorbents for Mercuric Removal [J]. Progress in Chemistry, 2008, 20(0203): 233-238.